CCINet:一种用于共显著性目标检测的级联共识交互网络

IF 6.5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Longsheng Wei , Xu Pei , Jiu Huang , Fan Xu
{"title":"CCINet:一种用于共显著性目标检测的级联共识交互网络","authors":"Longsheng Wei ,&nbsp;Xu Pei ,&nbsp;Jiu Huang ,&nbsp;Fan Xu","doi":"10.1016/j.neucom.2025.131613","DOIUrl":null,"url":null,"abstract":"<div><div>Co-saliency object detection imitates human attention behavior, with the aim of identifying common salient objects in a set of related images. Previous approaches generally suffer from a lack of interaction among the extracted co-saliency information. As a result, the detection maps often turn out to be incomplete or redundant. In this paper, we propose a Cascaded Consensus Interaction Network (CCINet) for co-saliency object detection. This network improves the fusion and interaction among features, thus making full use of the co-saliency information. In the encoding stage, we introduce an Edge Semantic Consensus (ESC) module. It effectively integrates low-level and high-level encoding information. In this way, it is able to capture both fine edge details and rich semantics. Meanwhile, the ESC module refines the co-saliency features, which enhances the detection of co-saliency regions. During the up-sampling stage, the Cascaded Contextual Aggregation (CCA) module employs attention mechanisms, adaptive pooling, and separated-dilated convolution for comprehensive feature extraction. This approach effectively reduces background noise and controls the number of parameters. Extensive experiments indicate that our model outperforms many excellent CoSOD methods in recent years on the three most popular benchmark datasets. Source code is available at: <span><span>https://github.com/JoeLAL24/CCINet.git</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":19268,"journal":{"name":"Neurocomputing","volume":"657 ","pages":"Article 131613"},"PeriodicalIF":6.5000,"publicationDate":"2025-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CCINet: A cascaded consensus interaction network for co-saliency object detection\",\"authors\":\"Longsheng Wei ,&nbsp;Xu Pei ,&nbsp;Jiu Huang ,&nbsp;Fan Xu\",\"doi\":\"10.1016/j.neucom.2025.131613\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Co-saliency object detection imitates human attention behavior, with the aim of identifying common salient objects in a set of related images. Previous approaches generally suffer from a lack of interaction among the extracted co-saliency information. As a result, the detection maps often turn out to be incomplete or redundant. In this paper, we propose a Cascaded Consensus Interaction Network (CCINet) for co-saliency object detection. This network improves the fusion and interaction among features, thus making full use of the co-saliency information. In the encoding stage, we introduce an Edge Semantic Consensus (ESC) module. It effectively integrates low-level and high-level encoding information. In this way, it is able to capture both fine edge details and rich semantics. Meanwhile, the ESC module refines the co-saliency features, which enhances the detection of co-saliency regions. During the up-sampling stage, the Cascaded Contextual Aggregation (CCA) module employs attention mechanisms, adaptive pooling, and separated-dilated convolution for comprehensive feature extraction. This approach effectively reduces background noise and controls the number of parameters. Extensive experiments indicate that our model outperforms many excellent CoSOD methods in recent years on the three most popular benchmark datasets. Source code is available at: <span><span>https://github.com/JoeLAL24/CCINet.git</span><svg><path></path></svg></span>.</div></div>\",\"PeriodicalId\":19268,\"journal\":{\"name\":\"Neurocomputing\",\"volume\":\"657 \",\"pages\":\"Article 131613\"},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2025-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neurocomputing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0925231225022854\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurocomputing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925231225022854","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

共显性目标检测模仿人类的注意行为,目的是在一组相关图像中识别出共同的显着目标。以前的方法通常缺乏提取的共显著性信息之间的相互作用。因此,检测图往往是不完整或冗余的。在本文中,我们提出了一个级联共识交互网络(CCINet)用于共显著性目标检测。该网络提高了特征间的融合和交互,充分利用了共显著性信息。在编码阶段,我们引入了边缘语义一致(ESC)模块。它有效地集成了低级和高级编码信息。这样既能捕捉到精细的边缘细节,又能捕捉到丰富的语义。同时,ESC模块对共显著特征进行了细化,增强了对共显著区域的检测。在上采样阶段,级联上下文聚合(CCA)模块采用注意机制、自适应池和分离扩张卷积进行综合特征提取。该方法有效地降低了背景噪声,控制了参数的数量。大量的实验表明,在三个最流行的基准数据集上,我们的模型优于近年来许多优秀的CoSOD方法。源代码可从https://github.com/JoeLAL24/CCINet.git获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
CCINet: A cascaded consensus interaction network for co-saliency object detection
Co-saliency object detection imitates human attention behavior, with the aim of identifying common salient objects in a set of related images. Previous approaches generally suffer from a lack of interaction among the extracted co-saliency information. As a result, the detection maps often turn out to be incomplete or redundant. In this paper, we propose a Cascaded Consensus Interaction Network (CCINet) for co-saliency object detection. This network improves the fusion and interaction among features, thus making full use of the co-saliency information. In the encoding stage, we introduce an Edge Semantic Consensus (ESC) module. It effectively integrates low-level and high-level encoding information. In this way, it is able to capture both fine edge details and rich semantics. Meanwhile, the ESC module refines the co-saliency features, which enhances the detection of co-saliency regions. During the up-sampling stage, the Cascaded Contextual Aggregation (CCA) module employs attention mechanisms, adaptive pooling, and separated-dilated convolution for comprehensive feature extraction. This approach effectively reduces background noise and controls the number of parameters. Extensive experiments indicate that our model outperforms many excellent CoSOD methods in recent years on the three most popular benchmark datasets. Source code is available at: https://github.com/JoeLAL24/CCINet.git.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neurocomputing
Neurocomputing 工程技术-计算机:人工智能
CiteScore
13.10
自引率
10.00%
发文量
1382
审稿时长
70 days
期刊介绍: Neurocomputing publishes articles describing recent fundamental contributions in the field of neurocomputing. Neurocomputing theory, practice and applications are the essential topics being covered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信