{"title":"有多少VHE伽玛射线双星可以被观测到?","authors":"A.M. Bykov , A.G. Kuranov , A.E. Petrov , K.A. Postnov","doi":"10.1016/j.jheap.2025.100484","DOIUrl":null,"url":null,"abstract":"<div><div>A population of Galactic gamma-ray binaries is currently emerging due to ever increasing sensitivity of gamma-ray observatories. The detection of very high energy (VHE) photons with energies well above 10 TeV from a dozen of sources and the estimated power of those sources make them potentially interesting cosmic ray accelerators. Multi-wavelength observations of gamma-ray binaries revealed that most of them include a young massive star in pair with a relativistic companion, either a black hole or energetic pulsar. Fast stellar winds interacting with powerful relativistic outflows from pulsars or the black hole jets in microquasars are favorable sites for very high energy particle acceleration. To estimate the expected number of gamma-ray binaries, we present here results of population synthesis calculations predicting the number of Galactic binaries in which a young massive OB- or Be-star is accompanied by a pulsar capable of producing a powerful relativistic outflow. The distributions over the binary eccentricities, orbital periods, Be-disk inclinations, and the pulsar braking energy losses are taken into account. Conditions for a binary to accelerate very high energy particles, radiate and absorb the non-thermal photons that may reach the observer are discussed. We model the anisotropic structure of the zone of interaction of the relativistic pulsar wind with the strongly magnetized massive star's wind. The stellar winds with strong (in a Gauss range) magnetic fields at ∼ AU distances colliding with powerful pulsar outflows are capable of accelerating particles up to PeV energies at some orbital configurations and phases. The strong magnetic field in the interaction region produces a highly anisotropic structure of the particle accelerator and the emitter in the pulsar outflow. The anisotropic radiation pattern may affect the gamma-ray photon absorption and the number of the observed gamma-ray loud systems.</div></div>","PeriodicalId":54265,"journal":{"name":"Journal of High Energy Astrophysics","volume":"50 ","pages":"Article 100484"},"PeriodicalIF":10.5000,"publicationDate":"2025-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"How many VHE gamma-ray binaries with young pulsars can be observed?\",\"authors\":\"A.M. Bykov , A.G. Kuranov , A.E. Petrov , K.A. Postnov\",\"doi\":\"10.1016/j.jheap.2025.100484\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A population of Galactic gamma-ray binaries is currently emerging due to ever increasing sensitivity of gamma-ray observatories. The detection of very high energy (VHE) photons with energies well above 10 TeV from a dozen of sources and the estimated power of those sources make them potentially interesting cosmic ray accelerators. Multi-wavelength observations of gamma-ray binaries revealed that most of them include a young massive star in pair with a relativistic companion, either a black hole or energetic pulsar. Fast stellar winds interacting with powerful relativistic outflows from pulsars or the black hole jets in microquasars are favorable sites for very high energy particle acceleration. To estimate the expected number of gamma-ray binaries, we present here results of population synthesis calculations predicting the number of Galactic binaries in which a young massive OB- or Be-star is accompanied by a pulsar capable of producing a powerful relativistic outflow. The distributions over the binary eccentricities, orbital periods, Be-disk inclinations, and the pulsar braking energy losses are taken into account. Conditions for a binary to accelerate very high energy particles, radiate and absorb the non-thermal photons that may reach the observer are discussed. We model the anisotropic structure of the zone of interaction of the relativistic pulsar wind with the strongly magnetized massive star's wind. The stellar winds with strong (in a Gauss range) magnetic fields at ∼ AU distances colliding with powerful pulsar outflows are capable of accelerating particles up to PeV energies at some orbital configurations and phases. The strong magnetic field in the interaction region produces a highly anisotropic structure of the particle accelerator and the emitter in the pulsar outflow. The anisotropic radiation pattern may affect the gamma-ray photon absorption and the number of the observed gamma-ray loud systems.</div></div>\",\"PeriodicalId\":54265,\"journal\":{\"name\":\"Journal of High Energy Astrophysics\",\"volume\":\"50 \",\"pages\":\"Article 100484\"},\"PeriodicalIF\":10.5000,\"publicationDate\":\"2025-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of High Energy Astrophysics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S221440482500165X\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of High Energy Astrophysics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S221440482500165X","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
How many VHE gamma-ray binaries with young pulsars can be observed?
A population of Galactic gamma-ray binaries is currently emerging due to ever increasing sensitivity of gamma-ray observatories. The detection of very high energy (VHE) photons with energies well above 10 TeV from a dozen of sources and the estimated power of those sources make them potentially interesting cosmic ray accelerators. Multi-wavelength observations of gamma-ray binaries revealed that most of them include a young massive star in pair with a relativistic companion, either a black hole or energetic pulsar. Fast stellar winds interacting with powerful relativistic outflows from pulsars or the black hole jets in microquasars are favorable sites for very high energy particle acceleration. To estimate the expected number of gamma-ray binaries, we present here results of population synthesis calculations predicting the number of Galactic binaries in which a young massive OB- or Be-star is accompanied by a pulsar capable of producing a powerful relativistic outflow. The distributions over the binary eccentricities, orbital periods, Be-disk inclinations, and the pulsar braking energy losses are taken into account. Conditions for a binary to accelerate very high energy particles, radiate and absorb the non-thermal photons that may reach the observer are discussed. We model the anisotropic structure of the zone of interaction of the relativistic pulsar wind with the strongly magnetized massive star's wind. The stellar winds with strong (in a Gauss range) magnetic fields at ∼ AU distances colliding with powerful pulsar outflows are capable of accelerating particles up to PeV energies at some orbital configurations and phases. The strong magnetic field in the interaction region produces a highly anisotropic structure of the particle accelerator and the emitter in the pulsar outflow. The anisotropic radiation pattern may affect the gamma-ray photon absorption and the number of the observed gamma-ray loud systems.
期刊介绍:
The journal welcomes manuscripts on theoretical models, simulations, and observations of highly energetic astrophysical objects both in our Galaxy and beyond. Among those, black holes at all scales, neutron stars, pulsars and their nebula, binaries, novae and supernovae, their remnants, active galaxies, and clusters are just a few examples. The journal will consider research across the whole electromagnetic spectrum, as well as research using various messengers, such as gravitational waves or neutrinos. Effects of high-energy phenomena on cosmology and star-formation, results from dedicated surveys expanding the knowledge of extreme environments, and astrophysical implications of dark matter are also welcomed topics.