{"title":"磁巨星耀斑高能辐射的第一性原理公式","authors":"Umer Rehman , Joseph Zhao Zhang , Bin-Bin Zhang","doi":"10.1016/j.jheap.2025.100489","DOIUrl":null,"url":null,"abstract":"<div><div>We develop a first-principles atmosphere model for neutron stars with ultra-strong magnetic fields (<span><math><mi>B</mi><mo>∼</mo><msup><mrow><mn>10</mn></mrow><mrow><mn>14</mn></mrow></msup><mo>,</mo><mi>G</mi></math></span>). In this framework, a magnetar giant flare (MGF) arises when a large energy release into confined field lines launches an expanding fireball (FB); thermal photons from the FB are Comptonized by relativistic <span><math><msup><mrow><mi>e</mi></mrow><mrow><mo>±</mo></mrow></msup></math></span> pairs, producing a modified blackbody spectrum with a Rayleigh–Jeans low-energy slope and a high-energy tail. We derive polarization-dependent opacities for a magnetized <span><math><msup><mrow><mi>e</mi></mrow><mrow><mo>±</mo></mrow></msup></math></span> pair plasma (including plasma and vacuum polarization effects) and formulate the coupled radiative-transfer equations for the ordinary and extraordinary modes. The calculations show that, in deep magnetospheric layers with <span><math><mi>n</mi><mo>∼</mo><msup><mrow><mn>10</mn></mrow><mrow><mn>24</mn></mrow></msup></math></span>–<span><math><msup><mrow><mn>10</mn></mrow><mrow><mn>28</mn></mrow></msup><mo>,</mo><mrow><mi>c</mi><msup><mrow><mi>m</mi></mrow><mrow><mo>−</mo><mn>3</mn></mrow></msup></mrow></math></span> and path length <span><math><mi>l</mi><mo>∼</mo><msup><mrow><mn>10</mn></mrow><mrow><mn>3</mn></mrow></msup></math></span>–<span><math><msup><mrow><mn>10</mn></mrow><mrow><mn>6</mn></mrow></msup><mo>,</mo><mrow><mi>cm</mi></mrow></math></span>, plasma effects substantially reshape the opacities and generate a broad spectral feature (<span><math><mi>Δ</mi><mi>ω</mi><mo>/</mo><mi>ω</mi></math></span>) around the electron cyclotron frequency <span><math><msub><mrow><mi>ω</mi></mrow><mrow><mi>B</mi></mrow></msub></math></span> via resonant polarization/mode conversion. Identifying this feature in data would enable a direct estimate of the surface magnetic field. Despite current observational limitations, the model reproduces key spectral properties of GRB200415A and GRB231115A, providing insight into their radiation mechanisms and the emission physics of MGFs.</div></div>","PeriodicalId":54265,"journal":{"name":"Journal of High Energy Astrophysics","volume":"50 ","pages":"Article 100489"},"PeriodicalIF":10.5000,"publicationDate":"2025-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"First-principles formulation of high-energy radiation from magnetar giant flares\",\"authors\":\"Umer Rehman , Joseph Zhao Zhang , Bin-Bin Zhang\",\"doi\":\"10.1016/j.jheap.2025.100489\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We develop a first-principles atmosphere model for neutron stars with ultra-strong magnetic fields (<span><math><mi>B</mi><mo>∼</mo><msup><mrow><mn>10</mn></mrow><mrow><mn>14</mn></mrow></msup><mo>,</mo><mi>G</mi></math></span>). In this framework, a magnetar giant flare (MGF) arises when a large energy release into confined field lines launches an expanding fireball (FB); thermal photons from the FB are Comptonized by relativistic <span><math><msup><mrow><mi>e</mi></mrow><mrow><mo>±</mo></mrow></msup></math></span> pairs, producing a modified blackbody spectrum with a Rayleigh–Jeans low-energy slope and a high-energy tail. We derive polarization-dependent opacities for a magnetized <span><math><msup><mrow><mi>e</mi></mrow><mrow><mo>±</mo></mrow></msup></math></span> pair plasma (including plasma and vacuum polarization effects) and formulate the coupled radiative-transfer equations for the ordinary and extraordinary modes. The calculations show that, in deep magnetospheric layers with <span><math><mi>n</mi><mo>∼</mo><msup><mrow><mn>10</mn></mrow><mrow><mn>24</mn></mrow></msup></math></span>–<span><math><msup><mrow><mn>10</mn></mrow><mrow><mn>28</mn></mrow></msup><mo>,</mo><mrow><mi>c</mi><msup><mrow><mi>m</mi></mrow><mrow><mo>−</mo><mn>3</mn></mrow></msup></mrow></math></span> and path length <span><math><mi>l</mi><mo>∼</mo><msup><mrow><mn>10</mn></mrow><mrow><mn>3</mn></mrow></msup></math></span>–<span><math><msup><mrow><mn>10</mn></mrow><mrow><mn>6</mn></mrow></msup><mo>,</mo><mrow><mi>cm</mi></mrow></math></span>, plasma effects substantially reshape the opacities and generate a broad spectral feature (<span><math><mi>Δ</mi><mi>ω</mi><mo>/</mo><mi>ω</mi></math></span>) around the electron cyclotron frequency <span><math><msub><mrow><mi>ω</mi></mrow><mrow><mi>B</mi></mrow></msub></math></span> via resonant polarization/mode conversion. Identifying this feature in data would enable a direct estimate of the surface magnetic field. Despite current observational limitations, the model reproduces key spectral properties of GRB200415A and GRB231115A, providing insight into their radiation mechanisms and the emission physics of MGFs.</div></div>\",\"PeriodicalId\":54265,\"journal\":{\"name\":\"Journal of High Energy Astrophysics\",\"volume\":\"50 \",\"pages\":\"Article 100489\"},\"PeriodicalIF\":10.5000,\"publicationDate\":\"2025-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of High Energy Astrophysics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214404825001703\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of High Energy Astrophysics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214404825001703","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
First-principles formulation of high-energy radiation from magnetar giant flares
We develop a first-principles atmosphere model for neutron stars with ultra-strong magnetic fields (). In this framework, a magnetar giant flare (MGF) arises when a large energy release into confined field lines launches an expanding fireball (FB); thermal photons from the FB are Comptonized by relativistic pairs, producing a modified blackbody spectrum with a Rayleigh–Jeans low-energy slope and a high-energy tail. We derive polarization-dependent opacities for a magnetized pair plasma (including plasma and vacuum polarization effects) and formulate the coupled radiative-transfer equations for the ordinary and extraordinary modes. The calculations show that, in deep magnetospheric layers with – and path length –, plasma effects substantially reshape the opacities and generate a broad spectral feature () around the electron cyclotron frequency via resonant polarization/mode conversion. Identifying this feature in data would enable a direct estimate of the surface magnetic field. Despite current observational limitations, the model reproduces key spectral properties of GRB200415A and GRB231115A, providing insight into their radiation mechanisms and the emission physics of MGFs.
期刊介绍:
The journal welcomes manuscripts on theoretical models, simulations, and observations of highly energetic astrophysical objects both in our Galaxy and beyond. Among those, black holes at all scales, neutron stars, pulsars and their nebula, binaries, novae and supernovae, their remnants, active galaxies, and clusters are just a few examples. The journal will consider research across the whole electromagnetic spectrum, as well as research using various messengers, such as gravitational waves or neutrinos. Effects of high-energy phenomena on cosmology and star-formation, results from dedicated surveys expanding the knowledge of extreme environments, and astrophysical implications of dark matter are also welcomed topics.