偏内偏出:跨域少射分类的分层通道空间偏置校准

IF 7.6 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Minghui Li , Hongxun Yao
{"title":"偏内偏出:跨域少射分类的分层通道空间偏置校准","authors":"Minghui Li ,&nbsp;Hongxun Yao","doi":"10.1016/j.knosys.2025.114475","DOIUrl":null,"url":null,"abstract":"<div><div>The core challenge of cross-domain few-shot learning (CD-FSL) stems from models’ inability to generalize source-domain inductive biases to target domains under significant distribution shifts. While existing methods predominantly employ strategies like auxiliary target data adaptation, feature disentanglement, or metric space alignment, they overlook two inherent biases entrenched during source-domain training: (1) channel-wise dependency on source-specific feature patterns and (2) spatial-wise preference for source-typical structures, both of which hinder cross-domain transfer. We propose the first unified <u><em>C</em></u>hannel-<u><em>S</em></u>patial <u><em>D</em></u>ual-dimensional <u><em>B</em></u>ias <u><em>C</em></u>alibration (CSDBC) framework to systematically address these biases through progressive dilution, recomposition, and alignment. Our approach integrates three key innovations: (1) a parameter-free <u><em>S</em></u>tatic <u><em>B</em></u>ase-class <u><em>B</em></u>ias <u><em>D</em></u>ilution (SBBD) module that dilutes source-specific channel-spatial biases through layer-wise and point-wise modulation, effectively suppressing overfitting to source-specific patterns; (2) a <u><em>D</em></u>ynamic <u><em>N</em></u>ovel-class <u><em>B</em></u>ias <u><em>R</em></u>ecomposition (DNBR) module that generates target-adaptive channel-spatial soft masks via meta-optimized lightweight depthwise separable convolutions, enabling target-domain channel reweighting and spatial preference adjustment; and (3) a <u><em>N</em></u>ovel-class <u><em>C</em></u>ross-image <u><em>S</em></u>emantic <u><em>A</em></u>lignment (NCSA) module that establishes channel correlations and spatial correspondences between support-query pairs, significantly enhancing both discriminability and semantic consistency of target-domain features. Extensive experiments across eight CD-FSL benchmarks demonstrate consistent improvements, outperforming SOTA methods by 1.35 % (5-way 1-shot) and 2.00 % (5-way 5-shot) in average accuracy under varying domain shifts.</div></div>","PeriodicalId":49939,"journal":{"name":"Knowledge-Based Systems","volume":"330 ","pages":"Article 114475"},"PeriodicalIF":7.6000,"publicationDate":"2025-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bias-in-debias-out: Hierarchical channel-spatial bias calibration for cross-domain few-shot classification\",\"authors\":\"Minghui Li ,&nbsp;Hongxun Yao\",\"doi\":\"10.1016/j.knosys.2025.114475\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The core challenge of cross-domain few-shot learning (CD-FSL) stems from models’ inability to generalize source-domain inductive biases to target domains under significant distribution shifts. While existing methods predominantly employ strategies like auxiliary target data adaptation, feature disentanglement, or metric space alignment, they overlook two inherent biases entrenched during source-domain training: (1) channel-wise dependency on source-specific feature patterns and (2) spatial-wise preference for source-typical structures, both of which hinder cross-domain transfer. We propose the first unified <u><em>C</em></u>hannel-<u><em>S</em></u>patial <u><em>D</em></u>ual-dimensional <u><em>B</em></u>ias <u><em>C</em></u>alibration (CSDBC) framework to systematically address these biases through progressive dilution, recomposition, and alignment. Our approach integrates three key innovations: (1) a parameter-free <u><em>S</em></u>tatic <u><em>B</em></u>ase-class <u><em>B</em></u>ias <u><em>D</em></u>ilution (SBBD) module that dilutes source-specific channel-spatial biases through layer-wise and point-wise modulation, effectively suppressing overfitting to source-specific patterns; (2) a <u><em>D</em></u>ynamic <u><em>N</em></u>ovel-class <u><em>B</em></u>ias <u><em>R</em></u>ecomposition (DNBR) module that generates target-adaptive channel-spatial soft masks via meta-optimized lightweight depthwise separable convolutions, enabling target-domain channel reweighting and spatial preference adjustment; and (3) a <u><em>N</em></u>ovel-class <u><em>C</em></u>ross-image <u><em>S</em></u>emantic <u><em>A</em></u>lignment (NCSA) module that establishes channel correlations and spatial correspondences between support-query pairs, significantly enhancing both discriminability and semantic consistency of target-domain features. Extensive experiments across eight CD-FSL benchmarks demonstrate consistent improvements, outperforming SOTA methods by 1.35 % (5-way 1-shot) and 2.00 % (5-way 5-shot) in average accuracy under varying domain shifts.</div></div>\",\"PeriodicalId\":49939,\"journal\":{\"name\":\"Knowledge-Based Systems\",\"volume\":\"330 \",\"pages\":\"Article 114475\"},\"PeriodicalIF\":7.6000,\"publicationDate\":\"2025-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Knowledge-Based Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S095070512501514X\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Knowledge-Based Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S095070512501514X","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

跨域少射学习(CD-FSL)的核心挑战在于模型无法将源域归纳偏差推广到显著分布变化的目标域。虽然现有方法主要采用辅助目标数据适应、特征解纠缠或度量空间对齐等策略,但它们忽略了源域训练过程中根深蒂固的两个固有偏差:(1)通道依赖于源特定特征模式;(2)对源典型结构的空间偏好,这两者都阻碍了跨域迁移。我们提出了第一个统一的通道-空间二维偏置校准(CSDBC)框架,通过逐步稀释、重组和校准来系统地解决这些偏置。我们的方法集成了三个关键创新:(1)无参数的静态基类偏置稀释(SBBD)模块,通过分层和点向调制来稀释源特定的信道空间偏置,有效抑制对源特定模式的过拟合;(2)动态新颖类偏置重构(DNBR)模块,该模块通过元优化的轻量级深度可分离卷积生成目标域自适应信道空间软掩模,实现目标域信道重加权和空间偏好调整;(3)新颖类跨图像语义对齐(NCSA)模块,建立支持查询对之间的通道相关性和空间对应关系,显著增强目标域特征的可分辨性和语义一致性。在8个CD-FSL基准测试中进行的广泛实验表明,在不同的域位移下,其平均精度比SOTA方法高出1.35% (5-way 1-shot)和2.00% (5-way 5-shot)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bias-in-debias-out: Hierarchical channel-spatial bias calibration for cross-domain few-shot classification
The core challenge of cross-domain few-shot learning (CD-FSL) stems from models’ inability to generalize source-domain inductive biases to target domains under significant distribution shifts. While existing methods predominantly employ strategies like auxiliary target data adaptation, feature disentanglement, or metric space alignment, they overlook two inherent biases entrenched during source-domain training: (1) channel-wise dependency on source-specific feature patterns and (2) spatial-wise preference for source-typical structures, both of which hinder cross-domain transfer. We propose the first unified Channel-Spatial Dual-dimensional Bias Calibration (CSDBC) framework to systematically address these biases through progressive dilution, recomposition, and alignment. Our approach integrates three key innovations: (1) a parameter-free Static Base-class Bias Dilution (SBBD) module that dilutes source-specific channel-spatial biases through layer-wise and point-wise modulation, effectively suppressing overfitting to source-specific patterns; (2) a Dynamic Novel-class Bias Recomposition (DNBR) module that generates target-adaptive channel-spatial soft masks via meta-optimized lightweight depthwise separable convolutions, enabling target-domain channel reweighting and spatial preference adjustment; and (3) a Novel-class Cross-image Semantic Alignment (NCSA) module that establishes channel correlations and spatial correspondences between support-query pairs, significantly enhancing both discriminability and semantic consistency of target-domain features. Extensive experiments across eight CD-FSL benchmarks demonstrate consistent improvements, outperforming SOTA methods by 1.35 % (5-way 1-shot) and 2.00 % (5-way 5-shot) in average accuracy under varying domain shifts.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Knowledge-Based Systems
Knowledge-Based Systems 工程技术-计算机:人工智能
CiteScore
14.80
自引率
12.50%
发文量
1245
审稿时长
7.8 months
期刊介绍: Knowledge-Based Systems, an international and interdisciplinary journal in artificial intelligence, publishes original, innovative, and creative research results in the field. It focuses on knowledge-based and other artificial intelligence techniques-based systems. The journal aims to support human prediction and decision-making through data science and computation techniques, provide a balanced coverage of theory and practical study, and encourage the development and implementation of knowledge-based intelligence models, methods, systems, and software tools. Applications in business, government, education, engineering, and healthcare are emphasized.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信