NPMFF-Net:一个不需要训练的点云分类和分割的统一框架

IF 7.6 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Hualong Zeng , Haijiang Zhu , Huaiyuan Yu , Mengting Liu , Ning An
{"title":"NPMFF-Net:一个不需要训练的点云分类和分割的统一框架","authors":"Hualong Zeng ,&nbsp;Haijiang Zhu ,&nbsp;Huaiyuan Yu ,&nbsp;Mengting Liu ,&nbsp;Ning An","doi":"10.1016/j.knosys.2025.114529","DOIUrl":null,"url":null,"abstract":"<div><div>Non-parametric networks have shown promise for understanding point clouds due to their training-free nature and low computational cost. However, existing methods such as Point-NN and Seg-NN underutilize geometric and frequency information. Although these methods demonstrate superior accuracy, we found that the potential features of point clouds can still be explored in depth. In this work, we revisit non-parametric networks and propose the Non-Parametric Multi-scale Feature Fusion Network (NPMFF-Net), a model designed to unify spatial and frequency information in point cloud analysis, featuring training-free components. The key is Plücker coordinates Encoding and Fourier Feature Mapping, combining geometric information with high-frequency features. We propose a non-parametric attention module to integrate contextual information and k-adaptive normal pooling to aggregate multi-scale features. Extensive experiments on the ModelNet10/40, ScanObjectNN, ShapeNetPart, S3DIS, and ScanNet datasets demonstrate the superiority of NPMFF-Net in point classification and segmentation tasks. We surpass Point-NN by 8.2 % OA and Seg-NN by 5.8 % OA on ModelNet40 for classification, while also achieving a 2.7 % improvement in mean IoU over Point-NN on ShapeNetPart for part segmentation.</div></div>","PeriodicalId":49939,"journal":{"name":"Knowledge-Based Systems","volume":"330 ","pages":"Article 114529"},"PeriodicalIF":7.6000,"publicationDate":"2025-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"NPMFF-Net: A training-free unified framework for point cloud classification and segmentation\",\"authors\":\"Hualong Zeng ,&nbsp;Haijiang Zhu ,&nbsp;Huaiyuan Yu ,&nbsp;Mengting Liu ,&nbsp;Ning An\",\"doi\":\"10.1016/j.knosys.2025.114529\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Non-parametric networks have shown promise for understanding point clouds due to their training-free nature and low computational cost. However, existing methods such as Point-NN and Seg-NN underutilize geometric and frequency information. Although these methods demonstrate superior accuracy, we found that the potential features of point clouds can still be explored in depth. In this work, we revisit non-parametric networks and propose the Non-Parametric Multi-scale Feature Fusion Network (NPMFF-Net), a model designed to unify spatial and frequency information in point cloud analysis, featuring training-free components. The key is Plücker coordinates Encoding and Fourier Feature Mapping, combining geometric information with high-frequency features. We propose a non-parametric attention module to integrate contextual information and k-adaptive normal pooling to aggregate multi-scale features. Extensive experiments on the ModelNet10/40, ScanObjectNN, ShapeNetPart, S3DIS, and ScanNet datasets demonstrate the superiority of NPMFF-Net in point classification and segmentation tasks. We surpass Point-NN by 8.2 % OA and Seg-NN by 5.8 % OA on ModelNet40 for classification, while also achieving a 2.7 % improvement in mean IoU over Point-NN on ShapeNetPart for part segmentation.</div></div>\",\"PeriodicalId\":49939,\"journal\":{\"name\":\"Knowledge-Based Systems\",\"volume\":\"330 \",\"pages\":\"Article 114529\"},\"PeriodicalIF\":7.6000,\"publicationDate\":\"2025-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Knowledge-Based Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0950705125015680\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Knowledge-Based Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0950705125015680","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

非参数网络由于其免训练性质和低计算成本而显示出理解点云的希望。然而,现有的方法如点神经网络和分段神经网络没有充分利用几何和频率信息。虽然这些方法显示出较高的精度,但我们发现点云的潜在特征仍然可以深入挖掘。在这项工作中,我们重新审视了非参数网络,并提出了非参数多尺度特征融合网络(NPMFF-Net),这是一个旨在统一点云分析中的空间和频率信息的模型,具有无训练成分。其关键是将几何信息与高频特征相结合的plicker坐标编码和傅立叶特征映射。我们提出了一个非参数关注模块来整合上下文信息和k-自适应正态池来聚合多尺度特征。在ModelNet10/40、ScanObjectNN、ShapeNetPart、S3DIS和ScanNet数据集上的大量实验证明了NPMFF-Net在点分类和分割任务中的优势。在ModelNet40上,我们比Point-NN的OA高出8.2%,比Seg-NN的OA高出5.8%,同时在ShapeNetPart上,在零件分割方面,我们也比Point-NN的平均IoU提高了2.7%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
NPMFF-Net: A training-free unified framework for point cloud classification and segmentation
Non-parametric networks have shown promise for understanding point clouds due to their training-free nature and low computational cost. However, existing methods such as Point-NN and Seg-NN underutilize geometric and frequency information. Although these methods demonstrate superior accuracy, we found that the potential features of point clouds can still be explored in depth. In this work, we revisit non-parametric networks and propose the Non-Parametric Multi-scale Feature Fusion Network (NPMFF-Net), a model designed to unify spatial and frequency information in point cloud analysis, featuring training-free components. The key is Plücker coordinates Encoding and Fourier Feature Mapping, combining geometric information with high-frequency features. We propose a non-parametric attention module to integrate contextual information and k-adaptive normal pooling to aggregate multi-scale features. Extensive experiments on the ModelNet10/40, ScanObjectNN, ShapeNetPart, S3DIS, and ScanNet datasets demonstrate the superiority of NPMFF-Net in point classification and segmentation tasks. We surpass Point-NN by 8.2 % OA and Seg-NN by 5.8 % OA on ModelNet40 for classification, while also achieving a 2.7 % improvement in mean IoU over Point-NN on ShapeNetPart for part segmentation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Knowledge-Based Systems
Knowledge-Based Systems 工程技术-计算机:人工智能
CiteScore
14.80
自引率
12.50%
发文量
1245
审稿时长
7.8 months
期刊介绍: Knowledge-Based Systems, an international and interdisciplinary journal in artificial intelligence, publishes original, innovative, and creative research results in the field. It focuses on knowledge-based and other artificial intelligence techniques-based systems. The journal aims to support human prediction and decision-making through data science and computation techniques, provide a balanced coverage of theory and practical study, and encourage the development and implementation of knowledge-based intelligence models, methods, systems, and software tools. Applications in business, government, education, engineering, and healthcare are emphasized.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信