全纯jump-diffusions

IF 1.2 2区 数学 Q3 STATISTICS & PROBABILITY
Christa Cuchiero , Francesca Primavera , Sara Svaluto-Ferro
{"title":"全纯jump-diffusions","authors":"Christa Cuchiero ,&nbsp;Francesca Primavera ,&nbsp;Sara Svaluto-Ferro","doi":"10.1016/j.spa.2025.104781","DOIUrl":null,"url":null,"abstract":"<div><div>We introduce a class of jump-diffusions, called <em>holomorphic</em>, of which the well-known classes of affine and polynomial processes are particular instances. The defining property concerns the extended generator, which is required to map a (subset of) holomorphic functions to themselves. This leads to a representation of the expectation of power series of the process’ marginals via a potentially infinite dimensional linear ODE. We apply the same procedure by considering exponentials of holomorphic functions, leading to a class of processes named <em>affine-holomorphic</em> for which a representation for quantities as the characteristic function of power series is provided. Relying on powerful results from complex analysis, we obtain sufficient conditions on the process’ characteristics which guarantee the holomorphic and affine-holomorphic properties and provide applications to several classes of jump-diffusions.</div></div>","PeriodicalId":51160,"journal":{"name":"Stochastic Processes and their Applications","volume":"191 ","pages":"Article 104781"},"PeriodicalIF":1.2000,"publicationDate":"2025-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Holomorphic jump-diffusions\",\"authors\":\"Christa Cuchiero ,&nbsp;Francesca Primavera ,&nbsp;Sara Svaluto-Ferro\",\"doi\":\"10.1016/j.spa.2025.104781\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We introduce a class of jump-diffusions, called <em>holomorphic</em>, of which the well-known classes of affine and polynomial processes are particular instances. The defining property concerns the extended generator, which is required to map a (subset of) holomorphic functions to themselves. This leads to a representation of the expectation of power series of the process’ marginals via a potentially infinite dimensional linear ODE. We apply the same procedure by considering exponentials of holomorphic functions, leading to a class of processes named <em>affine-holomorphic</em> for which a representation for quantities as the characteristic function of power series is provided. Relying on powerful results from complex analysis, we obtain sufficient conditions on the process’ characteristics which guarantee the holomorphic and affine-holomorphic properties and provide applications to several classes of jump-diffusions.</div></div>\",\"PeriodicalId\":51160,\"journal\":{\"name\":\"Stochastic Processes and their Applications\",\"volume\":\"191 \",\"pages\":\"Article 104781\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stochastic Processes and their Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S030441492500225X\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stochastic Processes and their Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S030441492500225X","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

我们引入了一类跳跃扩散,称为全纯,其中众所周知的仿射和多项式过程是它的特殊实例。定义属性涉及扩展生成器,它需要将全纯函数(子集)映射到自身。这导致通过潜在的无限维线性ODE表示过程边际的幂级数的期望。我们用同样的方法考虑全纯函数的指数,得到了一类被称为仿射全纯的过程,给出了量作为幂级数特征函数的表示。依靠复分析的有力结果,我们得到了保证全纯和仿射全纯性质的过程特征的充分条件,并为几类跳跃扩散提供了应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Holomorphic jump-diffusions
We introduce a class of jump-diffusions, called holomorphic, of which the well-known classes of affine and polynomial processes are particular instances. The defining property concerns the extended generator, which is required to map a (subset of) holomorphic functions to themselves. This leads to a representation of the expectation of power series of the process’ marginals via a potentially infinite dimensional linear ODE. We apply the same procedure by considering exponentials of holomorphic functions, leading to a class of processes named affine-holomorphic for which a representation for quantities as the characteristic function of power series is provided. Relying on powerful results from complex analysis, we obtain sufficient conditions on the process’ characteristics which guarantee the holomorphic and affine-holomorphic properties and provide applications to several classes of jump-diffusions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Stochastic Processes and their Applications
Stochastic Processes and their Applications 数学-统计学与概率论
CiteScore
2.90
自引率
7.10%
发文量
180
审稿时长
23.6 weeks
期刊介绍: Stochastic Processes and their Applications publishes papers on the theory and applications of stochastic processes. It is concerned with concepts and techniques, and is oriented towards a broad spectrum of mathematical, scientific and engineering interests. Characterization, structural properties, inference and control of stochastic processes are covered. The journal is exacting and scholarly in its standards. Every effort is made to promote innovation, vitality, and communication between disciplines. All papers are refereed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信