Heling Cao , Yanlong Guo , Yonghe Chu , Yun Wang , Junyi Duan , Peng Li
{"title":"基于曼巴和流形卷积融合网络的少镜头高光谱图像分类","authors":"Heling Cao , Yanlong Guo , Yonghe Chu , Yun Wang , Junyi Duan , Peng Li","doi":"10.1016/j.knosys.2025.114531","DOIUrl":null,"url":null,"abstract":"<div><div>Efficient modeling of global-local features is crucial for hyperspectral image (HSI) classification. The mamba network demonstrates strong capability in capturing global dependencies in HSI classification tasks, primarily utilizing a state-space model to extract first-order statistical features of spectral-spatial information in euclidean space, providing an initial representation of data characteristics. However, under few-shot conditions, fully exploiting effective features from limited samples and overcoming challenges such as class overlap and feature space sparsity caused by the insufficient extraction of second-order statistical features in riemannian space remain major research challenges. Therefore, we propose a dual branch manifold convolution-mamba network (DBMCMamba) for HSI classification. Specifically, it adaptively fuses forward and backward information through the vision mamba (Vim) block and utilizes the S6 module to extract global information, thereby enhancing global feature extraction capability. Meanwhile, the manifold convolution module extracts first-order statistical features of spectral-spatial information through convolutional layers and learns second-order statistics via the SPD manifold to strengthen DBMCMamba’s local feature representation under few-shot conditions. Finally, global and local features are fused for classification, effectively improving the accuracy and performance of HSI classification. On the Indian Pines, Pavia University, HongHu, and HanChuan datasets, DBMCMamba achieved classification accuracies of 95.23 %, 95.80 %, 95.58 %, and 94.93 %, respectively. Experimental results show that DBMCMamba demonstrates significant performance improvements compared to the state-of-the-art classification models. The code will be available online at <span><span>https://github.com/ASDFFGG121EAA/DBMCMamba</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":49939,"journal":{"name":"Knowledge-Based Systems","volume":"330 ","pages":"Article 114531"},"PeriodicalIF":7.6000,"publicationDate":"2025-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Few-Shot hyperspectral image classification with mamba and manifold convolution fusion network\",\"authors\":\"Heling Cao , Yanlong Guo , Yonghe Chu , Yun Wang , Junyi Duan , Peng Li\",\"doi\":\"10.1016/j.knosys.2025.114531\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Efficient modeling of global-local features is crucial for hyperspectral image (HSI) classification. The mamba network demonstrates strong capability in capturing global dependencies in HSI classification tasks, primarily utilizing a state-space model to extract first-order statistical features of spectral-spatial information in euclidean space, providing an initial representation of data characteristics. However, under few-shot conditions, fully exploiting effective features from limited samples and overcoming challenges such as class overlap and feature space sparsity caused by the insufficient extraction of second-order statistical features in riemannian space remain major research challenges. Therefore, we propose a dual branch manifold convolution-mamba network (DBMCMamba) for HSI classification. Specifically, it adaptively fuses forward and backward information through the vision mamba (Vim) block and utilizes the S6 module to extract global information, thereby enhancing global feature extraction capability. Meanwhile, the manifold convolution module extracts first-order statistical features of spectral-spatial information through convolutional layers and learns second-order statistics via the SPD manifold to strengthen DBMCMamba’s local feature representation under few-shot conditions. Finally, global and local features are fused for classification, effectively improving the accuracy and performance of HSI classification. On the Indian Pines, Pavia University, HongHu, and HanChuan datasets, DBMCMamba achieved classification accuracies of 95.23 %, 95.80 %, 95.58 %, and 94.93 %, respectively. Experimental results show that DBMCMamba demonstrates significant performance improvements compared to the state-of-the-art classification models. The code will be available online at <span><span>https://github.com/ASDFFGG121EAA/DBMCMamba</span><svg><path></path></svg></span>.</div></div>\",\"PeriodicalId\":49939,\"journal\":{\"name\":\"Knowledge-Based Systems\",\"volume\":\"330 \",\"pages\":\"Article 114531\"},\"PeriodicalIF\":7.6000,\"publicationDate\":\"2025-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Knowledge-Based Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0950705125015709\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Knowledge-Based Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0950705125015709","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Few-Shot hyperspectral image classification with mamba and manifold convolution fusion network
Efficient modeling of global-local features is crucial for hyperspectral image (HSI) classification. The mamba network demonstrates strong capability in capturing global dependencies in HSI classification tasks, primarily utilizing a state-space model to extract first-order statistical features of spectral-spatial information in euclidean space, providing an initial representation of data characteristics. However, under few-shot conditions, fully exploiting effective features from limited samples and overcoming challenges such as class overlap and feature space sparsity caused by the insufficient extraction of second-order statistical features in riemannian space remain major research challenges. Therefore, we propose a dual branch manifold convolution-mamba network (DBMCMamba) for HSI classification. Specifically, it adaptively fuses forward and backward information through the vision mamba (Vim) block and utilizes the S6 module to extract global information, thereby enhancing global feature extraction capability. Meanwhile, the manifold convolution module extracts first-order statistical features of spectral-spatial information through convolutional layers and learns second-order statistics via the SPD manifold to strengthen DBMCMamba’s local feature representation under few-shot conditions. Finally, global and local features are fused for classification, effectively improving the accuracy and performance of HSI classification. On the Indian Pines, Pavia University, HongHu, and HanChuan datasets, DBMCMamba achieved classification accuracies of 95.23 %, 95.80 %, 95.58 %, and 94.93 %, respectively. Experimental results show that DBMCMamba demonstrates significant performance improvements compared to the state-of-the-art classification models. The code will be available online at https://github.com/ASDFFGG121EAA/DBMCMamba.
期刊介绍:
Knowledge-Based Systems, an international and interdisciplinary journal in artificial intelligence, publishes original, innovative, and creative research results in the field. It focuses on knowledge-based and other artificial intelligence techniques-based systems. The journal aims to support human prediction and decision-making through data science and computation techniques, provide a balanced coverage of theory and practical study, and encourage the development and implementation of knowledge-based intelligence models, methods, systems, and software tools. Applications in business, government, education, engineering, and healthcare are emphasized.