物理信息降水临近预报的完全可微拉格朗日卷积神经网络

IF 3.2 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Peter Pavlík , Martin Výboh , Anna Bou Ezzeddine , Viera Rozinajová
{"title":"物理信息降水临近预报的完全可微拉格朗日卷积神经网络","authors":"Peter Pavlík ,&nbsp;Martin Výboh ,&nbsp;Anna Bou Ezzeddine ,&nbsp;Viera Rozinajová","doi":"10.1016/j.acags.2025.100296","DOIUrl":null,"url":null,"abstract":"<div><div>This paper presents a convolutional neural network model for precipitation nowcasting that combines data-driven learning with physics-informed domain knowledge. We propose LUPIN, a Lagrangian Double U-Net for Physics-Informed Nowcasting, that draws from existing extrapolation-based nowcasting methods. It consists of a U-Net that dynamically produces mesoscale advection motion fields, a differentiable semi-Lagrangian extrapolation operator, and an advection-free U-Net capturing the growth and decay of precipitation over time. Using our approach, we successfully implement the Lagrangian convolutional neural network for precipitation nowcasting in a fully differentiable and GPU-accelerated manner. This allows for end-to-end training and inference, including the data-driven Lagrangian coordinate system transformation of the data at runtime. We evaluate the model and compare it with other related AI-based models both quantitatively and qualitatively in an extreme event case study. Based on our evaluation, LUPIN matches and even exceeds the performance of the chosen benchmarks, opening the door for other Lagrangian machine learning models.</div></div>","PeriodicalId":33804,"journal":{"name":"Applied Computing and Geosciences","volume":"28 ","pages":"Article 100296"},"PeriodicalIF":3.2000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fully differentiable Lagrangian convolutional neural network for physics-informed precipitation nowcasting\",\"authors\":\"Peter Pavlík ,&nbsp;Martin Výboh ,&nbsp;Anna Bou Ezzeddine ,&nbsp;Viera Rozinajová\",\"doi\":\"10.1016/j.acags.2025.100296\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper presents a convolutional neural network model for precipitation nowcasting that combines data-driven learning with physics-informed domain knowledge. We propose LUPIN, a Lagrangian Double U-Net for Physics-Informed Nowcasting, that draws from existing extrapolation-based nowcasting methods. It consists of a U-Net that dynamically produces mesoscale advection motion fields, a differentiable semi-Lagrangian extrapolation operator, and an advection-free U-Net capturing the growth and decay of precipitation over time. Using our approach, we successfully implement the Lagrangian convolutional neural network for precipitation nowcasting in a fully differentiable and GPU-accelerated manner. This allows for end-to-end training and inference, including the data-driven Lagrangian coordinate system transformation of the data at runtime. We evaluate the model and compare it with other related AI-based models both quantitatively and qualitatively in an extreme event case study. Based on our evaluation, LUPIN matches and even exceeds the performance of the chosen benchmarks, opening the door for other Lagrangian machine learning models.</div></div>\",\"PeriodicalId\":33804,\"journal\":{\"name\":\"Applied Computing and Geosciences\",\"volume\":\"28 \",\"pages\":\"Article 100296\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Computing and Geosciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590197425000783\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Computing and Geosciences","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590197425000783","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种降水临近预报的卷积神经网络模型,该模型将数据驱动学习与物理知识相结合。我们提出LUPIN,一个拉格朗日双u网,用于物理信息临近预报,它借鉴了现有的基于外推的临近预报方法。它由一个动态产生中尺度平流运动场的U-Net、一个可微的半拉格朗日外推算子和一个捕捉降水随时间增长和衰减的无平流U-Net组成。利用我们的方法,我们以完全可微和gpu加速的方式成功地实现了降水临近预报的拉格朗日卷积神经网络。这允许端到端训练和推理,包括在运行时对数据进行数据驱动的拉格朗日坐标系转换。我们在一个极端事件案例研究中评估了该模型,并将其与其他相关的基于人工智能的模型进行了定量和定性的比较。根据我们的评估,LUPIN达到甚至超过了所选基准的性能,为其他拉格朗日机器学习模型打开了大门。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Fully differentiable Lagrangian convolutional neural network for physics-informed precipitation nowcasting

Fully differentiable Lagrangian convolutional neural network for physics-informed precipitation nowcasting
This paper presents a convolutional neural network model for precipitation nowcasting that combines data-driven learning with physics-informed domain knowledge. We propose LUPIN, a Lagrangian Double U-Net for Physics-Informed Nowcasting, that draws from existing extrapolation-based nowcasting methods. It consists of a U-Net that dynamically produces mesoscale advection motion fields, a differentiable semi-Lagrangian extrapolation operator, and an advection-free U-Net capturing the growth and decay of precipitation over time. Using our approach, we successfully implement the Lagrangian convolutional neural network for precipitation nowcasting in a fully differentiable and GPU-accelerated manner. This allows for end-to-end training and inference, including the data-driven Lagrangian coordinate system transformation of the data at runtime. We evaluate the model and compare it with other related AI-based models both quantitatively and qualitatively in an extreme event case study. Based on our evaluation, LUPIN matches and even exceeds the performance of the chosen benchmarks, opening the door for other Lagrangian machine learning models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Computing and Geosciences
Applied Computing and Geosciences Computer Science-General Computer Science
CiteScore
5.50
自引率
0.00%
发文量
23
审稿时长
5 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信