回报:使用开源AI对髋关节发育不良进行自动化多模态分析

IF 1.2 Q3 COMPUTER SCIENCE, SOFTWARE ENGINEERING
Adam McArthur , Stephanie Wichuk , Stephen Burnside , Andrew Kirby , Alexander Scammon , Damian Sol , Abhilash Hareendranathan , Jacob L. Jaremko
{"title":"回报:使用开源AI对髋关节发育不良进行自动化多模态分析","authors":"Adam McArthur ,&nbsp;Stephanie Wichuk ,&nbsp;Stephen Burnside ,&nbsp;Andrew Kirby ,&nbsp;Alexander Scammon ,&nbsp;Damian Sol ,&nbsp;Abhilash Hareendranathan ,&nbsp;Jacob L. Jaremko","doi":"10.1016/j.simpa.2025.100791","DOIUrl":null,"url":null,"abstract":"<div><div>Developmental dysplasia of the hip (<strong>DDH</strong>) poses significant diagnostic challenges, hindering timely intervention. Current screening methodologies lack standardization, and AI-driven studies suffer from reproducibility issues due to limited data and code availability. To address these limitations, we introduce Retuve, an open-source framework for multi-modality <strong>DDH</strong> analysis, encompassing both ultrasound (<strong>US</strong>) and X-ray imaging. Retuve provides a complete and reproducible workflow, offering open datasets comprising expert-annotated <strong>US</strong> and X-ray images, pre-trained models with training code and weights, and a user-friendly Python Application Programming Interface (<strong>API</strong>). The framework integrates segmentation and landmark detection models, enabling automated measurement of key diagnostic parameters such as the alpha angle and acetabular index. By adhering to open-source principles, Retuve promotes transparency, collaboration, and accessibility in <strong>DDH</strong> research. This framework can democratize <strong>DDH</strong> screening, facilitate early diagnosis, and improve patient outcomes by enabling widespread screening and early intervention. The GitHub repository/code can be found here: <span><span>https://github.com/radoss-org/retuve</span><svg><path></path></svg></span></div></div>","PeriodicalId":29771,"journal":{"name":"Software Impacts","volume":"26 ","pages":"Article 100791"},"PeriodicalIF":1.2000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Retuve: Automated multi-modality analysis of hip dysplasia with open source AI\",\"authors\":\"Adam McArthur ,&nbsp;Stephanie Wichuk ,&nbsp;Stephen Burnside ,&nbsp;Andrew Kirby ,&nbsp;Alexander Scammon ,&nbsp;Damian Sol ,&nbsp;Abhilash Hareendranathan ,&nbsp;Jacob L. Jaremko\",\"doi\":\"10.1016/j.simpa.2025.100791\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Developmental dysplasia of the hip (<strong>DDH</strong>) poses significant diagnostic challenges, hindering timely intervention. Current screening methodologies lack standardization, and AI-driven studies suffer from reproducibility issues due to limited data and code availability. To address these limitations, we introduce Retuve, an open-source framework for multi-modality <strong>DDH</strong> analysis, encompassing both ultrasound (<strong>US</strong>) and X-ray imaging. Retuve provides a complete and reproducible workflow, offering open datasets comprising expert-annotated <strong>US</strong> and X-ray images, pre-trained models with training code and weights, and a user-friendly Python Application Programming Interface (<strong>API</strong>). The framework integrates segmentation and landmark detection models, enabling automated measurement of key diagnostic parameters such as the alpha angle and acetabular index. By adhering to open-source principles, Retuve promotes transparency, collaboration, and accessibility in <strong>DDH</strong> research. This framework can democratize <strong>DDH</strong> screening, facilitate early diagnosis, and improve patient outcomes by enabling widespread screening and early intervention. The GitHub repository/code can be found here: <span><span>https://github.com/radoss-org/retuve</span><svg><path></path></svg></span></div></div>\",\"PeriodicalId\":29771,\"journal\":{\"name\":\"Software Impacts\",\"volume\":\"26 \",\"pages\":\"Article 100791\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Software Impacts\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S266596382500051X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Software Impacts","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S266596382500051X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

发育性髋关节发育不良(DDH)提出了重大的诊断挑战,阻碍了及时干预。目前的筛选方法缺乏标准化,并且由于数据和代码可用性有限,人工智能驱动的研究存在可重复性问题。为了解决这些限制,我们介绍了Retuve,一个多模态DDH分析的开源框架,包括超声(US)和x射线成像。Retuve提供了一个完整且可重复的工作流程,提供开放数据集,包括专家注释的美国和x射线图像,带有训练代码和权重的预训练模型,以及用户友好的Python应用程序编程接口(API)。该框架集成了分割和地标检测模型,能够自动测量关键诊断参数,如α角和髋臼指数。通过坚持开源原则,Retuve促进了DDH研究的透明度、协作性和可访问性。该框架可以使DDH筛查大众化,促进早期诊断,并通过广泛筛查和早期干预改善患者预后。GitHub存储库/代码可以在这里找到:https://github.com/radoss-org/retuve
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Retuve: Automated multi-modality analysis of hip dysplasia with open source AI

Retuve: Automated multi-modality analysis of hip dysplasia with open source AI
Developmental dysplasia of the hip (DDH) poses significant diagnostic challenges, hindering timely intervention. Current screening methodologies lack standardization, and AI-driven studies suffer from reproducibility issues due to limited data and code availability. To address these limitations, we introduce Retuve, an open-source framework for multi-modality DDH analysis, encompassing both ultrasound (US) and X-ray imaging. Retuve provides a complete and reproducible workflow, offering open datasets comprising expert-annotated US and X-ray images, pre-trained models with training code and weights, and a user-friendly Python Application Programming Interface (API). The framework integrates segmentation and landmark detection models, enabling automated measurement of key diagnostic parameters such as the alpha angle and acetabular index. By adhering to open-source principles, Retuve promotes transparency, collaboration, and accessibility in DDH research. This framework can democratize DDH screening, facilitate early diagnosis, and improve patient outcomes by enabling widespread screening and early intervention. The GitHub repository/code can be found here: https://github.com/radoss-org/retuve
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Software Impacts
Software Impacts Software
CiteScore
2.70
自引率
9.50%
发文量
0
审稿时长
16 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信