螺钉过程异常可视化(SPAV):用于螺钉拧紧异常检测的局部和全局机器学习可视化的Python模块

IF 1.2 Q3 COMPUTER SCIENCE, SOFTWARE ENGINEERING
Marta Moreno , Hugo Rocha , André Pilastri , Guilherme Moreira , Luís Miguel Matos , Paulo Cortez
{"title":"螺钉过程异常可视化(SPAV):用于螺钉拧紧异常检测的局部和全局机器学习可视化的Python模块","authors":"Marta Moreno ,&nbsp;Hugo Rocha ,&nbsp;André Pilastri ,&nbsp;Guilherme Moreira ,&nbsp;Luís Miguel Matos ,&nbsp;Paulo Cortez","doi":"10.1016/j.simpa.2025.100786","DOIUrl":null,"url":null,"abstract":"<div><div>Modern screwdriver systems generate real-time angle-torque data that form tightening curves that are valuable for quality inspection issues (e.g., detect faulty processes). This work describes the Screw Process Anomaly Visualization (SPAV) Python module, which provides several eXplainable AI (XAI) graphs for Machine Learning (ML) screw tightening results, namely global and local errors, with identification of most probable anomaly angle-torque locations. SPAV integrates seamlessly with the scientific Python ecosystem and is compatible with several ML implementations, including H2O and Keras deep AutoEncoders (AE).</div></div>","PeriodicalId":29771,"journal":{"name":"Software Impacts","volume":"26 ","pages":"Article 100786"},"PeriodicalIF":1.2000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Screw Process Anomaly Visualization (SPAV): A Python module for local and global machine learning visualizations for screw tightening anomaly detection\",\"authors\":\"Marta Moreno ,&nbsp;Hugo Rocha ,&nbsp;André Pilastri ,&nbsp;Guilherme Moreira ,&nbsp;Luís Miguel Matos ,&nbsp;Paulo Cortez\",\"doi\":\"10.1016/j.simpa.2025.100786\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Modern screwdriver systems generate real-time angle-torque data that form tightening curves that are valuable for quality inspection issues (e.g., detect faulty processes). This work describes the Screw Process Anomaly Visualization (SPAV) Python module, which provides several eXplainable AI (XAI) graphs for Machine Learning (ML) screw tightening results, namely global and local errors, with identification of most probable anomaly angle-torque locations. SPAV integrates seamlessly with the scientific Python ecosystem and is compatible with several ML implementations, including H2O and Keras deep AutoEncoders (AE).</div></div>\",\"PeriodicalId\":29771,\"journal\":{\"name\":\"Software Impacts\",\"volume\":\"26 \",\"pages\":\"Article 100786\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Software Impacts\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2665963825000466\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Software Impacts","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2665963825000466","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

现代螺丝刀系统生成实时角扭矩数据,形成拧紧曲线,对质量检查问题(例如,检测错误工艺)有价值。本工作描述了螺钉过程异常可视化(SPAV) Python模块,该模块为机器学习(ML)螺钉拧紧结果提供了几个可解释的AI (XAI)图,即全局和局部误差,并识别了最可能的异常角-扭矩位置。SPAV与科学Python生态系统无缝集成,并与多种ML实现兼容,包括H2O和Keras深度自动编码器(AE)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Screw Process Anomaly Visualization (SPAV): A Python module for local and global machine learning visualizations for screw tightening anomaly detection
Modern screwdriver systems generate real-time angle-torque data that form tightening curves that are valuable for quality inspection issues (e.g., detect faulty processes). This work describes the Screw Process Anomaly Visualization (SPAV) Python module, which provides several eXplainable AI (XAI) graphs for Machine Learning (ML) screw tightening results, namely global and local errors, with identification of most probable anomaly angle-torque locations. SPAV integrates seamlessly with the scientific Python ecosystem and is compatible with several ML implementations, including H2O and Keras deep AutoEncoders (AE).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Software Impacts
Software Impacts Software
CiteScore
2.70
自引率
9.50%
发文量
0
审稿时长
16 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信