Marta Moreno , Hugo Rocha , André Pilastri , Guilherme Moreira , Luís Miguel Matos , Paulo Cortez
{"title":"螺钉过程异常可视化(SPAV):用于螺钉拧紧异常检测的局部和全局机器学习可视化的Python模块","authors":"Marta Moreno , Hugo Rocha , André Pilastri , Guilherme Moreira , Luís Miguel Matos , Paulo Cortez","doi":"10.1016/j.simpa.2025.100786","DOIUrl":null,"url":null,"abstract":"<div><div>Modern screwdriver systems generate real-time angle-torque data that form tightening curves that are valuable for quality inspection issues (e.g., detect faulty processes). This work describes the Screw Process Anomaly Visualization (SPAV) Python module, which provides several eXplainable AI (XAI) graphs for Machine Learning (ML) screw tightening results, namely global and local errors, with identification of most probable anomaly angle-torque locations. SPAV integrates seamlessly with the scientific Python ecosystem and is compatible with several ML implementations, including H2O and Keras deep AutoEncoders (AE).</div></div>","PeriodicalId":29771,"journal":{"name":"Software Impacts","volume":"26 ","pages":"Article 100786"},"PeriodicalIF":1.2000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Screw Process Anomaly Visualization (SPAV): A Python module for local and global machine learning visualizations for screw tightening anomaly detection\",\"authors\":\"Marta Moreno , Hugo Rocha , André Pilastri , Guilherme Moreira , Luís Miguel Matos , Paulo Cortez\",\"doi\":\"10.1016/j.simpa.2025.100786\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Modern screwdriver systems generate real-time angle-torque data that form tightening curves that are valuable for quality inspection issues (e.g., detect faulty processes). This work describes the Screw Process Anomaly Visualization (SPAV) Python module, which provides several eXplainable AI (XAI) graphs for Machine Learning (ML) screw tightening results, namely global and local errors, with identification of most probable anomaly angle-torque locations. SPAV integrates seamlessly with the scientific Python ecosystem and is compatible with several ML implementations, including H2O and Keras deep AutoEncoders (AE).</div></div>\",\"PeriodicalId\":29771,\"journal\":{\"name\":\"Software Impacts\",\"volume\":\"26 \",\"pages\":\"Article 100786\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Software Impacts\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2665963825000466\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Software Impacts","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2665963825000466","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
Screw Process Anomaly Visualization (SPAV): A Python module for local and global machine learning visualizations for screw tightening anomaly detection
Modern screwdriver systems generate real-time angle-torque data that form tightening curves that are valuable for quality inspection issues (e.g., detect faulty processes). This work describes the Screw Process Anomaly Visualization (SPAV) Python module, which provides several eXplainable AI (XAI) graphs for Machine Learning (ML) screw tightening results, namely global and local errors, with identification of most probable anomaly angle-torque locations. SPAV integrates seamlessly with the scientific Python ecosystem and is compatible with several ML implementations, including H2O and Keras deep AutoEncoders (AE).