色散或非线性管理下NLS方程的爆破解

IF 2.9 3区 数学 Q1 MATHEMATICS, APPLIED
Jing Li , Ying He , Cui Ning , Xiaofei Zhao
{"title":"色散或非线性管理下NLS方程的爆破解","authors":"Jing Li ,&nbsp;Ying He ,&nbsp;Cui Ning ,&nbsp;Xiaofei Zhao","doi":"10.1016/j.physd.2025.134957","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we study the dispersion-managed nonlinear Schrödinger (DM-NLS) equation <span><math><mrow><mi>i</mi><msub><mrow><mi>∂</mi></mrow><mrow><mi>t</mi></mrow></msub><mi>u</mi><mrow><mo>(</mo><mi>t</mi><mo>,</mo><mi>x</mi><mo>)</mo></mrow><mo>+</mo><mi>γ</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mi>Δ</mi><mi>u</mi><mrow><mo>(</mo><mi>t</mi><mo>,</mo><mi>x</mi><mo>)</mo></mrow><mo>=</mo><msup><mrow><mrow><mo>|</mo><mi>u</mi><mrow><mo>(</mo><mi>t</mi><mo>,</mo><mi>x</mi><mo>)</mo></mrow><mo>|</mo></mrow></mrow><mrow><mfrac><mrow><mn>4</mn></mrow><mrow><mi>d</mi></mrow></mfrac></mrow></msup><mi>u</mi><mrow><mo>(</mo><mi>t</mi><mo>,</mo><mi>x</mi><mo>)</mo></mrow><mo>,</mo><mspace></mspace><mi>x</mi><mo>∈</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>,</mo></mrow></math></span> and the nonlinearity-managed NLS (NM-NLS) equation: <span><math><mrow><mi>i</mi><msub><mrow><mi>∂</mi></mrow><mrow><mi>t</mi></mrow></msub><mi>u</mi><mrow><mo>(</mo><mi>t</mi><mo>,</mo><mi>x</mi><mo>)</mo></mrow><mo>+</mo><mi>Δ</mi><mi>u</mi><mrow><mo>(</mo><mi>t</mi><mo>,</mo><mi>x</mi><mo>)</mo></mrow><mo>=</mo><mi>γ</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><msup><mrow><mrow><mo>|</mo><mi>u</mi><mrow><mo>(</mo><mi>t</mi><mo>,</mo><mi>x</mi><mo>)</mo></mrow><mo>|</mo></mrow></mrow><mrow><mfrac><mrow><mn>4</mn></mrow><mrow><mi>d</mi></mrow></mfrac></mrow></msup><mi>u</mi><mrow><mo>(</mo><mi>t</mi><mo>,</mo><mi>x</mi><mo>)</mo></mrow><mo>,</mo><mspace></mspace><mi>x</mi><mo>∈</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>,</mo></mrow></math></span> where <span><math><mrow><mi>γ</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow></mrow></math></span> is a periodic function which is equal to <span><math><mrow><mo>−</mo><mn>1</mn></mrow></math></span> when <span><math><mrow><mi>t</mi><mo>∈</mo><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></mrow></mrow></math></span> and is equal to 1 when <span><math><mrow><mi>t</mi><mo>∈</mo><mrow><mo>(</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>]</mo></mrow></mrow></math></span>. The two models share the feature that the focusing and defocusing effects convert periodically. For the classical focusing NLS, it is known that the initial data <span><math><mrow><msub><mrow><mi>u</mi></mrow><mrow><mn>0</mn></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>=</mo><msup><mrow><mi>T</mi></mrow><mrow><mo>−</mo><mfrac><mrow><mi>d</mi></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></msup><msup><mrow><mi>e</mi></mrow><mrow><mi>i</mi><mfrac><mrow><msup><mrow><mrow><mo>|</mo><mi>x</mi><mo>|</mo></mrow></mrow><mrow><mn>2</mn></mrow></msup></mrow><mrow><mn>4</mn><mi>T</mi></mrow></mfrac><mo>−</mo><mi>i</mi><mfrac><mrow><msup><mrow><mi>ω</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow><mrow><mi>T</mi></mrow></mfrac></mrow></msup><msub><mrow><mi>Q</mi></mrow><mrow><mi>ω</mi></mrow></msub><mfenced><mrow><mfrac><mrow><mi>x</mi></mrow><mrow><mi>T</mi></mrow></mfrac></mrow></mfenced></mrow></math></span> leads to a blowup solution <span><math><mrow><msup><mrow><mrow><mo>(</mo><mi>T</mi><mo>−</mo><mi>t</mi><mo>)</mo></mrow></mrow><mrow><mo>−</mo><mfrac><mrow><mi>d</mi></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></msup><msup><mrow><mi>e</mi></mrow><mrow><mi>i</mi><mfrac><mrow><msup><mrow><mrow><mo>|</mo><mi>x</mi><mo>|</mo></mrow></mrow><mrow><mn>2</mn></mrow></msup></mrow><mrow><mn>4</mn><mrow><mo>(</mo><mi>T</mi><mo>−</mo><mi>t</mi><mo>)</mo></mrow></mrow></mfrac><mo>−</mo><mi>i</mi><mfrac><mrow><msup><mrow><mi>ω</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow><mrow><mi>T</mi><mo>−</mo><mi>t</mi></mrow></mfrac></mrow></msup><msub><mrow><mi>Q</mi></mrow><mrow><mi>ω</mi></mrow></msub><mfenced><mrow><mfrac><mrow><mi>x</mi></mrow><mrow><mi>T</mi><mo>−</mo><mi>t</mi></mrow></mfrac></mrow></mfenced><mo>,</mo></mrow></math></span> so when <span><math><mrow><mi>T</mi><mo>≤</mo><mn>1</mn></mrow></math></span>, this is also a blowup solution for DM-NLS and NM-NLS which blows up in the first focusing layer.</div><div>For DM-NLS, we prove that when <span><math><mrow><mi>T</mi><mo>&gt;</mo><mn>1</mn></mrow></math></span>, the initial data <span><math><msub><mrow><mi>u</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> above does not lead to a finite-time blowup and the corresponding solution is globally well-posed. For NM-NLS, we prove the global well-posedness for <span><math><mrow><mi>T</mi><mo>∈</mo><mrow><mo>(</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>)</mo></mrow></mrow></math></span> and we construct solution that can blow up at any focusing layer. The theoretical studies are complemented by extensive numerical explorations towards understanding the stabilization effects in the two models and addressing their difference.</div></div>","PeriodicalId":20050,"journal":{"name":"Physica D: Nonlinear Phenomena","volume":"483 ","pages":"Article 134957"},"PeriodicalIF":2.9000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On blowup solution in NLS equation under dispersion or nonlinearity management\",\"authors\":\"Jing Li ,&nbsp;Ying He ,&nbsp;Cui Ning ,&nbsp;Xiaofei Zhao\",\"doi\":\"10.1016/j.physd.2025.134957\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we study the dispersion-managed nonlinear Schrödinger (DM-NLS) equation <span><math><mrow><mi>i</mi><msub><mrow><mi>∂</mi></mrow><mrow><mi>t</mi></mrow></msub><mi>u</mi><mrow><mo>(</mo><mi>t</mi><mo>,</mo><mi>x</mi><mo>)</mo></mrow><mo>+</mo><mi>γ</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mi>Δ</mi><mi>u</mi><mrow><mo>(</mo><mi>t</mi><mo>,</mo><mi>x</mi><mo>)</mo></mrow><mo>=</mo><msup><mrow><mrow><mo>|</mo><mi>u</mi><mrow><mo>(</mo><mi>t</mi><mo>,</mo><mi>x</mi><mo>)</mo></mrow><mo>|</mo></mrow></mrow><mrow><mfrac><mrow><mn>4</mn></mrow><mrow><mi>d</mi></mrow></mfrac></mrow></msup><mi>u</mi><mrow><mo>(</mo><mi>t</mi><mo>,</mo><mi>x</mi><mo>)</mo></mrow><mo>,</mo><mspace></mspace><mi>x</mi><mo>∈</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>,</mo></mrow></math></span> and the nonlinearity-managed NLS (NM-NLS) equation: <span><math><mrow><mi>i</mi><msub><mrow><mi>∂</mi></mrow><mrow><mi>t</mi></mrow></msub><mi>u</mi><mrow><mo>(</mo><mi>t</mi><mo>,</mo><mi>x</mi><mo>)</mo></mrow><mo>+</mo><mi>Δ</mi><mi>u</mi><mrow><mo>(</mo><mi>t</mi><mo>,</mo><mi>x</mi><mo>)</mo></mrow><mo>=</mo><mi>γ</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><msup><mrow><mrow><mo>|</mo><mi>u</mi><mrow><mo>(</mo><mi>t</mi><mo>,</mo><mi>x</mi><mo>)</mo></mrow><mo>|</mo></mrow></mrow><mrow><mfrac><mrow><mn>4</mn></mrow><mrow><mi>d</mi></mrow></mfrac></mrow></msup><mi>u</mi><mrow><mo>(</mo><mi>t</mi><mo>,</mo><mi>x</mi><mo>)</mo></mrow><mo>,</mo><mspace></mspace><mi>x</mi><mo>∈</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>,</mo></mrow></math></span> where <span><math><mrow><mi>γ</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow></mrow></math></span> is a periodic function which is equal to <span><math><mrow><mo>−</mo><mn>1</mn></mrow></math></span> when <span><math><mrow><mi>t</mi><mo>∈</mo><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></mrow></mrow></math></span> and is equal to 1 when <span><math><mrow><mi>t</mi><mo>∈</mo><mrow><mo>(</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>]</mo></mrow></mrow></math></span>. The two models share the feature that the focusing and defocusing effects convert periodically. For the classical focusing NLS, it is known that the initial data <span><math><mrow><msub><mrow><mi>u</mi></mrow><mrow><mn>0</mn></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>=</mo><msup><mrow><mi>T</mi></mrow><mrow><mo>−</mo><mfrac><mrow><mi>d</mi></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></msup><msup><mrow><mi>e</mi></mrow><mrow><mi>i</mi><mfrac><mrow><msup><mrow><mrow><mo>|</mo><mi>x</mi><mo>|</mo></mrow></mrow><mrow><mn>2</mn></mrow></msup></mrow><mrow><mn>4</mn><mi>T</mi></mrow></mfrac><mo>−</mo><mi>i</mi><mfrac><mrow><msup><mrow><mi>ω</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow><mrow><mi>T</mi></mrow></mfrac></mrow></msup><msub><mrow><mi>Q</mi></mrow><mrow><mi>ω</mi></mrow></msub><mfenced><mrow><mfrac><mrow><mi>x</mi></mrow><mrow><mi>T</mi></mrow></mfrac></mrow></mfenced></mrow></math></span> leads to a blowup solution <span><math><mrow><msup><mrow><mrow><mo>(</mo><mi>T</mi><mo>−</mo><mi>t</mi><mo>)</mo></mrow></mrow><mrow><mo>−</mo><mfrac><mrow><mi>d</mi></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></msup><msup><mrow><mi>e</mi></mrow><mrow><mi>i</mi><mfrac><mrow><msup><mrow><mrow><mo>|</mo><mi>x</mi><mo>|</mo></mrow></mrow><mrow><mn>2</mn></mrow></msup></mrow><mrow><mn>4</mn><mrow><mo>(</mo><mi>T</mi><mo>−</mo><mi>t</mi><mo>)</mo></mrow></mrow></mfrac><mo>−</mo><mi>i</mi><mfrac><mrow><msup><mrow><mi>ω</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow><mrow><mi>T</mi><mo>−</mo><mi>t</mi></mrow></mfrac></mrow></msup><msub><mrow><mi>Q</mi></mrow><mrow><mi>ω</mi></mrow></msub><mfenced><mrow><mfrac><mrow><mi>x</mi></mrow><mrow><mi>T</mi><mo>−</mo><mi>t</mi></mrow></mfrac></mrow></mfenced><mo>,</mo></mrow></math></span> so when <span><math><mrow><mi>T</mi><mo>≤</mo><mn>1</mn></mrow></math></span>, this is also a blowup solution for DM-NLS and NM-NLS which blows up in the first focusing layer.</div><div>For DM-NLS, we prove that when <span><math><mrow><mi>T</mi><mo>&gt;</mo><mn>1</mn></mrow></math></span>, the initial data <span><math><msub><mrow><mi>u</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> above does not lead to a finite-time blowup and the corresponding solution is globally well-posed. For NM-NLS, we prove the global well-posedness for <span><math><mrow><mi>T</mi><mo>∈</mo><mrow><mo>(</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>)</mo></mrow></mrow></math></span> and we construct solution that can blow up at any focusing layer. The theoretical studies are complemented by extensive numerical explorations towards understanding the stabilization effects in the two models and addressing their difference.</div></div>\",\"PeriodicalId\":20050,\"journal\":{\"name\":\"Physica D: Nonlinear Phenomena\",\"volume\":\"483 \",\"pages\":\"Article 134957\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physica D: Nonlinear Phenomena\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167278925004348\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica D: Nonlinear Phenomena","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167278925004348","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了色散管理非线性Schrödinger (DM-NLS)方程i∂tu(t,x)+γ(t)Δu(t,x)=|u(t,x)|4du(t,x),x∈Rd,以及非线性管理NLS (NM-NLS)方程:i∂tu(t,x)+Δu(t,x)=γ(t)|u(t,x)|4du(t,x),x∈Rd,其中γ(t)是一个周期函数,当t∈(0,1)时等于- 1,当t∈(1,2)时等于1。这两种模型都具有对焦和散焦效果周期性转换的特点。对于经典聚焦NLS,已知初始数据u0(x)=T - d2ei|x|24T−1 ω 2tq ω xt,得到一个爆破解(T−T) - d2ei|x|24(T−T)−1 ω 2t−tQωxT−T,因此当T≤1时,这也是DM-NLS和NM-NLS在第一聚焦层爆破的爆破解。对于DM-NLS,我们证明了当T>;1时,上述初始数据u0不会导致有限时间爆破,其解是全局适定的。对于NM-NLS,我们证明了T∈(1,2)的全局适定性,并构造了可在任意聚焦层爆炸的解。理论研究得到了广泛的数值探索的补充,以理解两种模型的稳定效应并解决它们的差异。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On blowup solution in NLS equation under dispersion or nonlinearity management
In this paper, we study the dispersion-managed nonlinear Schrödinger (DM-NLS) equation itu(t,x)+γ(t)Δu(t,x)=|u(t,x)|4du(t,x),xRd, and the nonlinearity-managed NLS (NM-NLS) equation: itu(t,x)+Δu(t,x)=γ(t)|u(t,x)|4du(t,x),xRd, where γ(t) is a periodic function which is equal to 1 when t(0,1] and is equal to 1 when t(1,2]. The two models share the feature that the focusing and defocusing effects convert periodically. For the classical focusing NLS, it is known that the initial data u0(x)=Td2ei|x|24Tiω2TQωxT leads to a blowup solution (Tt)d2ei|x|24(Tt)iω2TtQωxTt, so when T1, this is also a blowup solution for DM-NLS and NM-NLS which blows up in the first focusing layer.
For DM-NLS, we prove that when T>1, the initial data u0 above does not lead to a finite-time blowup and the corresponding solution is globally well-posed. For NM-NLS, we prove the global well-posedness for T(1,2) and we construct solution that can blow up at any focusing layer. The theoretical studies are complemented by extensive numerical explorations towards understanding the stabilization effects in the two models and addressing their difference.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physica D: Nonlinear Phenomena
Physica D: Nonlinear Phenomena 物理-物理:数学物理
CiteScore
7.30
自引率
7.50%
发文量
213
审稿时长
65 days
期刊介绍: Physica D (Nonlinear Phenomena) publishes research and review articles reporting on experimental and theoretical works, techniques and ideas that advance the understanding of nonlinear phenomena. Topics encompass wave motion in physical, chemical and biological systems; physical or biological phenomena governed by nonlinear field equations, including hydrodynamics and turbulence; pattern formation and cooperative phenomena; instability, bifurcations, chaos, and space-time disorder; integrable/Hamiltonian systems; asymptotic analysis and, more generally, mathematical methods for nonlinear systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信