arpdr++:利用局部-全局时间建模实现基于智能手机的室内行人定位

IF 4.6 2区 计算机科学 Q1 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Xiaoqiang Teng , Shibiao Xu , Deke Guo , Yulan Guo , Pengfei Xu , Runbo Hu , Hua Chai
{"title":"arpdr++:利用局部-全局时间建模实现基于智能手机的室内行人定位","authors":"Xiaoqiang Teng ,&nbsp;Shibiao Xu ,&nbsp;Deke Guo ,&nbsp;Yulan Guo ,&nbsp;Pengfei Xu ,&nbsp;Runbo Hu ,&nbsp;Hua Chai","doi":"10.1016/j.comnet.2025.111710","DOIUrl":null,"url":null,"abstract":"<div><div>The increasing prevalence of mobile computing has made Pedestrian Dead Reckoning (PDR) one of the most promising and attractive indoor localization techniques for ubiquitous applications. However, existing PDR approaches are either sensitive to various users or suffer from accumulated errors that cause position drifts. To address these issues, this paper proposes ARPDR++, an accurate and robust PDR approach that improves the accuracy and robustness of indoor localization methods. ARPDR++ introduces a novel step counting algorithm based on motion models that deeply exploits inertial sensor data. We combine step counting with adaptive thresholding to personalize the PDR system for different users. Furthermore, we propose a novel stride-heading model with a deep neural network to predict stride lengths and walking orientations, which significantly reduces displacement errors. Experimental results on public datasets demonstrate that ARPDR++ outperforms the state-of-the-art PDR methods.</div></div>","PeriodicalId":50637,"journal":{"name":"Computer Networks","volume":"272 ","pages":"Article 111710"},"PeriodicalIF":4.6000,"publicationDate":"2025-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ARPDR++: Exploiting local-global temporal modeling for smartphone-based indoor pedestrian localization\",\"authors\":\"Xiaoqiang Teng ,&nbsp;Shibiao Xu ,&nbsp;Deke Guo ,&nbsp;Yulan Guo ,&nbsp;Pengfei Xu ,&nbsp;Runbo Hu ,&nbsp;Hua Chai\",\"doi\":\"10.1016/j.comnet.2025.111710\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The increasing prevalence of mobile computing has made Pedestrian Dead Reckoning (PDR) one of the most promising and attractive indoor localization techniques for ubiquitous applications. However, existing PDR approaches are either sensitive to various users or suffer from accumulated errors that cause position drifts. To address these issues, this paper proposes ARPDR++, an accurate and robust PDR approach that improves the accuracy and robustness of indoor localization methods. ARPDR++ introduces a novel step counting algorithm based on motion models that deeply exploits inertial sensor data. We combine step counting with adaptive thresholding to personalize the PDR system for different users. Furthermore, we propose a novel stride-heading model with a deep neural network to predict stride lengths and walking orientations, which significantly reduces displacement errors. Experimental results on public datasets demonstrate that ARPDR++ outperforms the state-of-the-art PDR methods.</div></div>\",\"PeriodicalId\":50637,\"journal\":{\"name\":\"Computer Networks\",\"volume\":\"272 \",\"pages\":\"Article 111710\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Networks\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1389128625006760\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1389128625006760","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

摘要

随着移动计算的日益普及,行人航位推算(PDR)已成为最具前景和吸引力的室内定位技术之一。然而,现有的PDR方法要么对不同的用户敏感,要么存在导致位置漂移的累积误差。为了解决这些问题,本文提出了一种精确且鲁棒的PDR方法arpdr++,该方法提高了室内定位方法的准确性和鲁棒性。arpdr++引入了一种新的基于运动模型的步长计数算法,该算法深度利用了惯性传感器数据。我们将步长计数与自适应阈值相结合,为不同的用户定制个性化的PDR系统。此外,我们还提出了一种新的基于深度神经网络的步幅方向模型来预测步幅长度和行走方向,从而显著降低了位移误差。在公共数据集上的实验结果表明,arpdr++优于最先进的PDR方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ARPDR++: Exploiting local-global temporal modeling for smartphone-based indoor pedestrian localization
The increasing prevalence of mobile computing has made Pedestrian Dead Reckoning (PDR) one of the most promising and attractive indoor localization techniques for ubiquitous applications. However, existing PDR approaches are either sensitive to various users or suffer from accumulated errors that cause position drifts. To address these issues, this paper proposes ARPDR++, an accurate and robust PDR approach that improves the accuracy and robustness of indoor localization methods. ARPDR++ introduces a novel step counting algorithm based on motion models that deeply exploits inertial sensor data. We combine step counting with adaptive thresholding to personalize the PDR system for different users. Furthermore, we propose a novel stride-heading model with a deep neural network to predict stride lengths and walking orientations, which significantly reduces displacement errors. Experimental results on public datasets demonstrate that ARPDR++ outperforms the state-of-the-art PDR methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computer Networks
Computer Networks 工程技术-电信学
CiteScore
10.80
自引率
3.60%
发文量
434
审稿时长
8.6 months
期刊介绍: Computer Networks is an international, archival journal providing a publication vehicle for complete coverage of all topics of interest to those involved in the computer communications networking area. The audience includes researchers, managers and operators of networks as well as designers and implementors. The Editorial Board will consider any material for publication that is of interest to those groups.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信