具有无模型假设的高维数据k样本Behrens-Fisher问题

IF 0.8 4区 数学 Q3 STATISTICS & PROBABILITY
Yanbo Pei, Xiaoxiao Ren, Baoxue Zhang
{"title":"具有无模型假设的高维数据k样本Behrens-Fisher问题","authors":"Yanbo Pei,&nbsp;Xiaoxiao Ren,&nbsp;Baoxue Zhang","doi":"10.1016/j.jspi.2025.106354","DOIUrl":null,"url":null,"abstract":"<div><div>The problem of testing the equality of <em>k</em>-sample mean vectors with different covariance matrices, known as the Behrens-Fisher (BF) problem for <em>k</em>-sample, is a significant issue in statistics. Hu and Bai (2017) proposed a test statistic that operates under a factor-like model structure assumption and demonstrated its normal limit. Building on this work, we further explore the asymptotic properties of the test statistic. We prove that the asymptotic null distribution of the test statistic is a Chi-square-type mixture distribution under a model-free assumption and establish its asymptotic power under a full alternative hypothesis. Moreover, we show that the asymptotic null distribution of the test statistic is either normal or a weighted sum of normal and Chi-square random variables, depending on the convergence rate of the eigenvalues of the covariance matrix with model free assumption. To address practical challenges in high-dimensional data, we propose a new weighted bootstrap procedure that is simple to implement. Simulation studies demonstrate that our proposed test procedure outperforms existing methods in terms of size control under various settings. Furthermore, real data applications illustrate the applicability of our test procedure to a variety of high-dimensional data analysis problems.</div></div>","PeriodicalId":50039,"journal":{"name":"Journal of Statistical Planning and Inference","volume":"242 ","pages":"Article 106354"},"PeriodicalIF":0.8000,"publicationDate":"2025-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The k-sample Behrens-Fisher problem for high-dimensional data with model free assumption\",\"authors\":\"Yanbo Pei,&nbsp;Xiaoxiao Ren,&nbsp;Baoxue Zhang\",\"doi\":\"10.1016/j.jspi.2025.106354\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The problem of testing the equality of <em>k</em>-sample mean vectors with different covariance matrices, known as the Behrens-Fisher (BF) problem for <em>k</em>-sample, is a significant issue in statistics. Hu and Bai (2017) proposed a test statistic that operates under a factor-like model structure assumption and demonstrated its normal limit. Building on this work, we further explore the asymptotic properties of the test statistic. We prove that the asymptotic null distribution of the test statistic is a Chi-square-type mixture distribution under a model-free assumption and establish its asymptotic power under a full alternative hypothesis. Moreover, we show that the asymptotic null distribution of the test statistic is either normal or a weighted sum of normal and Chi-square random variables, depending on the convergence rate of the eigenvalues of the covariance matrix with model free assumption. To address practical challenges in high-dimensional data, we propose a new weighted bootstrap procedure that is simple to implement. Simulation studies demonstrate that our proposed test procedure outperforms existing methods in terms of size control under various settings. Furthermore, real data applications illustrate the applicability of our test procedure to a variety of high-dimensional data analysis problems.</div></div>\",\"PeriodicalId\":50039,\"journal\":{\"name\":\"Journal of Statistical Planning and Inference\",\"volume\":\"242 \",\"pages\":\"Article 106354\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Statistical Planning and Inference\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378375825000928\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Statistical Planning and Inference","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378375825000928","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

用不同的协方差矩阵检验k-样本均值向量是否相等的问题,被称为k-样本的Behrens-Fisher (BF)问题,是统计学中的一个重要问题。Hu和Bai(2017)提出了在类因子模型结构假设下运行的检验统计量,并证明了其正常极限。在此基础上,我们进一步探讨了检验统计量的渐近性质。在无模型假设下证明了检验统计量的渐近零分布是一个卡方型混合分布,在完全备择假设下证明了检验统计量的渐近幂。此外,我们证明了检验统计量的渐近零分布要么是正态分布,要么是正态和卡方随机变量的加权和,这取决于在无模型假设下协方差矩阵的特征值的收敛速度。为了解决高维数据中的实际挑战,我们提出了一种新的加权自举过程,该过程易于实现。仿真研究表明,我们提出的测试程序在各种设置下的尺寸控制方面优于现有方法。此外,实际数据应用说明了我们的测试程序对各种高维数据分析问题的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The k-sample Behrens-Fisher problem for high-dimensional data with model free assumption
The problem of testing the equality of k-sample mean vectors with different covariance matrices, known as the Behrens-Fisher (BF) problem for k-sample, is a significant issue in statistics. Hu and Bai (2017) proposed a test statistic that operates under a factor-like model structure assumption and demonstrated its normal limit. Building on this work, we further explore the asymptotic properties of the test statistic. We prove that the asymptotic null distribution of the test statistic is a Chi-square-type mixture distribution under a model-free assumption and establish its asymptotic power under a full alternative hypothesis. Moreover, we show that the asymptotic null distribution of the test statistic is either normal or a weighted sum of normal and Chi-square random variables, depending on the convergence rate of the eigenvalues of the covariance matrix with model free assumption. To address practical challenges in high-dimensional data, we propose a new weighted bootstrap procedure that is simple to implement. Simulation studies demonstrate that our proposed test procedure outperforms existing methods in terms of size control under various settings. Furthermore, real data applications illustrate the applicability of our test procedure to a variety of high-dimensional data analysis problems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Statistical Planning and Inference
Journal of Statistical Planning and Inference 数学-统计学与概率论
CiteScore
2.10
自引率
11.10%
发文量
78
审稿时长
3-6 weeks
期刊介绍: The Journal of Statistical Planning and Inference offers itself as a multifaceted and all-inclusive bridge between classical aspects of statistics and probability, and the emerging interdisciplinary aspects that have a potential of revolutionizing the subject. While we maintain our traditional strength in statistical inference, design, classical probability, and large sample methods, we also have a far more inclusive and broadened scope to keep up with the new problems that confront us as statisticians, mathematicians, and scientists. We publish high quality articles in all branches of statistics, probability, discrete mathematics, machine learning, and bioinformatics. We also especially welcome well written and up to date review articles on fundamental themes of statistics, probability, machine learning, and general biostatistics. Thoughtful letters to the editors, interesting problems in need of a solution, and short notes carrying an element of elegance or beauty are equally welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信