Umar Memon, Wolfgang Mayer, Matt Selway, Markus Stumptner
{"title":"人工智能增强的数字孪生的互操作性","authors":"Umar Memon, Wolfgang Mayer, Matt Selway, Markus Stumptner","doi":"10.1016/j.jii.2025.100961","DOIUrl":null,"url":null,"abstract":"<div><div>Interoperability is one of the biggest challenges when multiple digital twins are used in collaboration. Although attempts to standardise and define interfaces have made significant progress, real interoperability is still difficult to achieve. It is due to unstated assumptions, contextual factors, and quality characteristics not covered by conventional methods. This paper presents a composition framework that uses a meta-model to capture contextual factors and quality characteristics in a structured manner that is required for compatibility between the models. It is achieved by developing a meta-model that explicitly represents the quality characteristics that can be used to decide whether digital twin models can be validly composed. Validation of the approach is illustrated by examples showing how our approach identifies the issues that are otherwise hidden compatibility issues. This paper also provides an algorithm to provide reasoning logic for requirements assessment by making implicit assumptions and contextual factors explicit and enabling the composition of digital twin models to be more effective.</div></div>","PeriodicalId":55975,"journal":{"name":"Journal of Industrial Information Integration","volume":"48 ","pages":"Article 100961"},"PeriodicalIF":10.4000,"publicationDate":"2025-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Interoperability of AI-enhanced digital twins\",\"authors\":\"Umar Memon, Wolfgang Mayer, Matt Selway, Markus Stumptner\",\"doi\":\"10.1016/j.jii.2025.100961\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Interoperability is one of the biggest challenges when multiple digital twins are used in collaboration. Although attempts to standardise and define interfaces have made significant progress, real interoperability is still difficult to achieve. It is due to unstated assumptions, contextual factors, and quality characteristics not covered by conventional methods. This paper presents a composition framework that uses a meta-model to capture contextual factors and quality characteristics in a structured manner that is required for compatibility between the models. It is achieved by developing a meta-model that explicitly represents the quality characteristics that can be used to decide whether digital twin models can be validly composed. Validation of the approach is illustrated by examples showing how our approach identifies the issues that are otherwise hidden compatibility issues. This paper also provides an algorithm to provide reasoning logic for requirements assessment by making implicit assumptions and contextual factors explicit and enabling the composition of digital twin models to be more effective.</div></div>\",\"PeriodicalId\":55975,\"journal\":{\"name\":\"Journal of Industrial Information Integration\",\"volume\":\"48 \",\"pages\":\"Article 100961\"},\"PeriodicalIF\":10.4000,\"publicationDate\":\"2025-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Industrial Information Integration\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2452414X25001840\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Industrial Information Integration","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452414X25001840","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Interoperability is one of the biggest challenges when multiple digital twins are used in collaboration. Although attempts to standardise and define interfaces have made significant progress, real interoperability is still difficult to achieve. It is due to unstated assumptions, contextual factors, and quality characteristics not covered by conventional methods. This paper presents a composition framework that uses a meta-model to capture contextual factors and quality characteristics in a structured manner that is required for compatibility between the models. It is achieved by developing a meta-model that explicitly represents the quality characteristics that can be used to decide whether digital twin models can be validly composed. Validation of the approach is illustrated by examples showing how our approach identifies the issues that are otherwise hidden compatibility issues. This paper also provides an algorithm to provide reasoning logic for requirements assessment by making implicit assumptions and contextual factors explicit and enabling the composition of digital twin models to be more effective.
期刊介绍:
The Journal of Industrial Information Integration focuses on the industry's transition towards industrial integration and informatization, covering not only hardware and software but also information integration. It serves as a platform for promoting advances in industrial information integration, addressing challenges, issues, and solutions in an interdisciplinary forum for researchers, practitioners, and policy makers.
The Journal of Industrial Information Integration welcomes papers on foundational, technical, and practical aspects of industrial information integration, emphasizing the complex and cross-disciplinary topics that arise in industrial integration. Techniques from mathematical science, computer science, computer engineering, electrical and electronic engineering, manufacturing engineering, and engineering management are crucial in this context.