时空伪标签去噪发现新意图

IF 6.9 1区 管理学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Yiting Huang , Yu-Ming Shang , Wei Huang , Sanchuan Guo , Jinhu Chen , Xi Zhang , Philip S. Yu
{"title":"时空伪标签去噪发现新意图","authors":"Yiting Huang ,&nbsp;Yu-Ming Shang ,&nbsp;Wei Huang ,&nbsp;Sanchuan Guo ,&nbsp;Jinhu Chen ,&nbsp;Xi Zhang ,&nbsp;Philip S. Yu","doi":"10.1016/j.ipm.2025.104381","DOIUrl":null,"url":null,"abstract":"<div><div>New intent discovery, which aims to identify unknown intents from unlabeled data, is crucial for information processing. Existing methods typically adopt a semi-supervised paradigm by leveraging pseudo-labels to enhance intent recognition. However, pseudo-labels are prone to noise, which can degrade model convergence and compromise recognition accuracy. To address this issue, we propose a novel framework that dynamically refines pseudo-labels by incorporating spatio-temporal features. Specifically, from a spatial perspective, we evaluate sample-wise confidence and inter-sample cohesion to assess pseudo-label reliability. From a temporal perspective, we track category consistency and distribution stability across sample groups to adapt to evolving data patterns. By integrating these features with an adaptive thresholding strategy, our framework effectively filters and corrects erroneous pseudo-labels. Experiments on five diverse benchmarks demonstrate that our method achieves state-of-the-art performance, providing a more robust solution for new intent discovery.</div></div>","PeriodicalId":50365,"journal":{"name":"Information Processing & Management","volume":"63 2","pages":"Article 104381"},"PeriodicalIF":6.9000,"publicationDate":"2025-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Discovering new intents via spatio-temporal pseudo-label denoising\",\"authors\":\"Yiting Huang ,&nbsp;Yu-Ming Shang ,&nbsp;Wei Huang ,&nbsp;Sanchuan Guo ,&nbsp;Jinhu Chen ,&nbsp;Xi Zhang ,&nbsp;Philip S. Yu\",\"doi\":\"10.1016/j.ipm.2025.104381\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>New intent discovery, which aims to identify unknown intents from unlabeled data, is crucial for information processing. Existing methods typically adopt a semi-supervised paradigm by leveraging pseudo-labels to enhance intent recognition. However, pseudo-labels are prone to noise, which can degrade model convergence and compromise recognition accuracy. To address this issue, we propose a novel framework that dynamically refines pseudo-labels by incorporating spatio-temporal features. Specifically, from a spatial perspective, we evaluate sample-wise confidence and inter-sample cohesion to assess pseudo-label reliability. From a temporal perspective, we track category consistency and distribution stability across sample groups to adapt to evolving data patterns. By integrating these features with an adaptive thresholding strategy, our framework effectively filters and corrects erroneous pseudo-labels. Experiments on five diverse benchmarks demonstrate that our method achieves state-of-the-art performance, providing a more robust solution for new intent discovery.</div></div>\",\"PeriodicalId\":50365,\"journal\":{\"name\":\"Information Processing & Management\",\"volume\":\"63 2\",\"pages\":\"Article 104381\"},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2025-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Information Processing & Management\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S030645732500322X\",\"RegionNum\":1,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Processing & Management","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S030645732500322X","RegionNum":1,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

新意图发现旨在从未标记的数据中识别未知意图,是信息处理的关键。现有方法通常采用半监督范式,利用伪标签来增强意图识别。然而,伪标签容易产生噪声,从而降低模型的收敛性,影响识别的准确性。为了解决这个问题,我们提出了一个新的框架,通过结合时空特征来动态地提炼伪标签。具体而言,从空间角度来看,我们评估样本明智的置信度和样本间的凝聚力来评估伪标签的可靠性。从时间的角度来看,我们跟踪样本组之间的类别一致性和分布稳定性,以适应不断变化的数据模式。通过将这些特征与自适应阈值策略相结合,我们的框架可以有效地过滤和纠正错误的伪标签。在五个不同基准上的实验表明,我们的方法达到了最先进的性能,为新意图发现提供了更强大的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Discovering new intents via spatio-temporal pseudo-label denoising
New intent discovery, which aims to identify unknown intents from unlabeled data, is crucial for information processing. Existing methods typically adopt a semi-supervised paradigm by leveraging pseudo-labels to enhance intent recognition. However, pseudo-labels are prone to noise, which can degrade model convergence and compromise recognition accuracy. To address this issue, we propose a novel framework that dynamically refines pseudo-labels by incorporating spatio-temporal features. Specifically, from a spatial perspective, we evaluate sample-wise confidence and inter-sample cohesion to assess pseudo-label reliability. From a temporal perspective, we track category consistency and distribution stability across sample groups to adapt to evolving data patterns. By integrating these features with an adaptive thresholding strategy, our framework effectively filters and corrects erroneous pseudo-labels. Experiments on five diverse benchmarks demonstrate that our method achieves state-of-the-art performance, providing a more robust solution for new intent discovery.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Information Processing & Management
Information Processing & Management 工程技术-计算机:信息系统
CiteScore
17.00
自引率
11.60%
发文量
276
审稿时长
39 days
期刊介绍: Information Processing and Management is dedicated to publishing cutting-edge original research at the convergence of computing and information science. Our scope encompasses theory, methods, and applications across various domains, including advertising, business, health, information science, information technology marketing, and social computing. We aim to cater to the interests of both primary researchers and practitioners by offering an effective platform for the timely dissemination of advanced and topical issues in this interdisciplinary field. The journal places particular emphasis on original research articles, research survey articles, research method articles, and articles addressing critical applications of research. Join us in advancing knowledge and innovation at the intersection of computing and information science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信