{"title":"一个集成的基于主体的建模和人工智能框架,用于增强少数民族社区在数字能源服务中的体验","authors":"Mennan Guder, Nazmiye Balta-Ozkan","doi":"10.1016/j.egyai.2025.100624","DOIUrl":null,"url":null,"abstract":"<div><div>Digitalisation plays a pivotal role in enhancing energy efficiency; however, it also highlights significant governance challenges and exacerbates various forms of energy injustice. This study explores how technological injustice exacerbates energy poverty, particularly via disparities in digital service access. The focus is on understanding and addressing challenges faced by minority ethnic (ME) communities, who often encounter heightened barriers to essential online energy services. While previous research has noted barriers ME communities face in energy markets, this study broadens this literature to analyse these issues for access to digital energy services.</div><div>The study integrates modelling, simulation, and AI to address these inequalities. The framework comprises three core modules: AI, Environment Configuration, and Agent-Based Modelling (ABM) and Simulation. Its primary aim is to identify effective strategies, policy changes, and adjustments that enhance online service experiences while addressing the unique challenges faced by these communities.</div><div>The AI Module uses ensemble-based ML pipelines to develop region-specific models. It addresses issues such as high dimensionality and overfitting by incorporating methods like Principal Component Analysis, Recursive Feature Elimination, and hyperparameter optimization.</div><div>The Environment Configuration Module supports tailored simulations by adapting datasets and regional characteristics, ensuring the accuracy and relevance of the simulations to the target communities.</div><div>The ABM and Simulation Module facilitates in-depth analysis of policy impacts and service provider attributes.</div><div>This framework offers valuable insights into improving online service delivery, promoting fairness, and addressing disparities in digital experiences. This work advances energy justice research by quantifying how socio-technical barriers disproportionately affect ME communities.</div></div>","PeriodicalId":34138,"journal":{"name":"Energy and AI","volume":"22 ","pages":"Article 100624"},"PeriodicalIF":9.6000,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An integrated agent-based modelling and artificial intelligence framework for enhancing the experience of minority ethnic communities in digital energy services\",\"authors\":\"Mennan Guder, Nazmiye Balta-Ozkan\",\"doi\":\"10.1016/j.egyai.2025.100624\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Digitalisation plays a pivotal role in enhancing energy efficiency; however, it also highlights significant governance challenges and exacerbates various forms of energy injustice. This study explores how technological injustice exacerbates energy poverty, particularly via disparities in digital service access. The focus is on understanding and addressing challenges faced by minority ethnic (ME) communities, who often encounter heightened barriers to essential online energy services. While previous research has noted barriers ME communities face in energy markets, this study broadens this literature to analyse these issues for access to digital energy services.</div><div>The study integrates modelling, simulation, and AI to address these inequalities. The framework comprises three core modules: AI, Environment Configuration, and Agent-Based Modelling (ABM) and Simulation. Its primary aim is to identify effective strategies, policy changes, and adjustments that enhance online service experiences while addressing the unique challenges faced by these communities.</div><div>The AI Module uses ensemble-based ML pipelines to develop region-specific models. It addresses issues such as high dimensionality and overfitting by incorporating methods like Principal Component Analysis, Recursive Feature Elimination, and hyperparameter optimization.</div><div>The Environment Configuration Module supports tailored simulations by adapting datasets and regional characteristics, ensuring the accuracy and relevance of the simulations to the target communities.</div><div>The ABM and Simulation Module facilitates in-depth analysis of policy impacts and service provider attributes.</div><div>This framework offers valuable insights into improving online service delivery, promoting fairness, and addressing disparities in digital experiences. This work advances energy justice research by quantifying how socio-technical barriers disproportionately affect ME communities.</div></div>\",\"PeriodicalId\":34138,\"journal\":{\"name\":\"Energy and AI\",\"volume\":\"22 \",\"pages\":\"Article 100624\"},\"PeriodicalIF\":9.6000,\"publicationDate\":\"2025-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy and AI\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666546825001569\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy and AI","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666546825001569","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
An integrated agent-based modelling and artificial intelligence framework for enhancing the experience of minority ethnic communities in digital energy services
Digitalisation plays a pivotal role in enhancing energy efficiency; however, it also highlights significant governance challenges and exacerbates various forms of energy injustice. This study explores how technological injustice exacerbates energy poverty, particularly via disparities in digital service access. The focus is on understanding and addressing challenges faced by minority ethnic (ME) communities, who often encounter heightened barriers to essential online energy services. While previous research has noted barriers ME communities face in energy markets, this study broadens this literature to analyse these issues for access to digital energy services.
The study integrates modelling, simulation, and AI to address these inequalities. The framework comprises three core modules: AI, Environment Configuration, and Agent-Based Modelling (ABM) and Simulation. Its primary aim is to identify effective strategies, policy changes, and adjustments that enhance online service experiences while addressing the unique challenges faced by these communities.
The AI Module uses ensemble-based ML pipelines to develop region-specific models. It addresses issues such as high dimensionality and overfitting by incorporating methods like Principal Component Analysis, Recursive Feature Elimination, and hyperparameter optimization.
The Environment Configuration Module supports tailored simulations by adapting datasets and regional characteristics, ensuring the accuracy and relevance of the simulations to the target communities.
The ABM and Simulation Module facilitates in-depth analysis of policy impacts and service provider attributes.
This framework offers valuable insights into improving online service delivery, promoting fairness, and addressing disparities in digital experiences. This work advances energy justice research by quantifying how socio-technical barriers disproportionately affect ME communities.