{"title":"HCV感染的空间异质性和扩散驱动动力学:一个数学模型框架","authors":"Feng Rao , Dandan Xue , Shufen Wei , Rui Liu","doi":"10.1016/j.matcom.2025.09.028","DOIUrl":null,"url":null,"abstract":"<div><div>Hepatitis C virus (HCV) infection in the body includes not only virus-to-cell infection, but also cell-to-cell infection. This infection will stimulate the body to produce cytotoxic T lymphocyte (CTL) immune response and antibody immune response. In this paper, we study the disease dynamics of two kinds of infection and two kinds of immune models, which include spatial diffusion and heterogeneity of internal environment, and further explore the influence of spatial heterogeneity on the extinction and persistence of hepatitis C virus (HCV). We defined the basic reproduction number, deduced the corresponding expression of the basic reproduction number <span><math><msub><mrow><mi>R</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>, and proved that the basic reproduction number <span><math><msub><mrow><mi>R</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> can be used as the threshold of whether the virus exists or not. That is, if the basic reproduction number <span><math><mrow><msub><mrow><mi>R</mi></mrow><mrow><mn>0</mn></mrow></msub><mo><</mo><mn>1</mn></mrow></math></span>, the disease-free balance is globally stable and HCV is extinct; if the basic reproduction number <span><math><mrow><msub><mrow><mi>R</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>></mo><mn>1</mn></mrow></math></span>, there is at least one local equilibrium, and HCV will persist. Furthermore, we performed numerical simulations to investigate how spatial diffusion and heterogeneity affect disease dynamics. Combining theoretical analysis with numerical simulations, our findings reveal that spatial heterogeneity can increase the risk of viral infection within the host. However, the mobility of infected cells and viruses may serve to diminish these risks.</div></div>","PeriodicalId":49856,"journal":{"name":"Mathematics and Computers in Simulation","volume":"241 ","pages":"Pages 727-753"},"PeriodicalIF":4.4000,"publicationDate":"2025-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spatial heterogeneity and diffusion-driven dynamics of HCV infection: A mathematical modeling framework\",\"authors\":\"Feng Rao , Dandan Xue , Shufen Wei , Rui Liu\",\"doi\":\"10.1016/j.matcom.2025.09.028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Hepatitis C virus (HCV) infection in the body includes not only virus-to-cell infection, but also cell-to-cell infection. This infection will stimulate the body to produce cytotoxic T lymphocyte (CTL) immune response and antibody immune response. In this paper, we study the disease dynamics of two kinds of infection and two kinds of immune models, which include spatial diffusion and heterogeneity of internal environment, and further explore the influence of spatial heterogeneity on the extinction and persistence of hepatitis C virus (HCV). We defined the basic reproduction number, deduced the corresponding expression of the basic reproduction number <span><math><msub><mrow><mi>R</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>, and proved that the basic reproduction number <span><math><msub><mrow><mi>R</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> can be used as the threshold of whether the virus exists or not. That is, if the basic reproduction number <span><math><mrow><msub><mrow><mi>R</mi></mrow><mrow><mn>0</mn></mrow></msub><mo><</mo><mn>1</mn></mrow></math></span>, the disease-free balance is globally stable and HCV is extinct; if the basic reproduction number <span><math><mrow><msub><mrow><mi>R</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>></mo><mn>1</mn></mrow></math></span>, there is at least one local equilibrium, and HCV will persist. Furthermore, we performed numerical simulations to investigate how spatial diffusion and heterogeneity affect disease dynamics. Combining theoretical analysis with numerical simulations, our findings reveal that spatial heterogeneity can increase the risk of viral infection within the host. However, the mobility of infected cells and viruses may serve to diminish these risks.</div></div>\",\"PeriodicalId\":49856,\"journal\":{\"name\":\"Mathematics and Computers in Simulation\",\"volume\":\"241 \",\"pages\":\"Pages 727-753\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematics and Computers in Simulation\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378475425004082\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics and Computers in Simulation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378475425004082","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Spatial heterogeneity and diffusion-driven dynamics of HCV infection: A mathematical modeling framework
Hepatitis C virus (HCV) infection in the body includes not only virus-to-cell infection, but also cell-to-cell infection. This infection will stimulate the body to produce cytotoxic T lymphocyte (CTL) immune response and antibody immune response. In this paper, we study the disease dynamics of two kinds of infection and two kinds of immune models, which include spatial diffusion and heterogeneity of internal environment, and further explore the influence of spatial heterogeneity on the extinction and persistence of hepatitis C virus (HCV). We defined the basic reproduction number, deduced the corresponding expression of the basic reproduction number , and proved that the basic reproduction number can be used as the threshold of whether the virus exists or not. That is, if the basic reproduction number , the disease-free balance is globally stable and HCV is extinct; if the basic reproduction number , there is at least one local equilibrium, and HCV will persist. Furthermore, we performed numerical simulations to investigate how spatial diffusion and heterogeneity affect disease dynamics. Combining theoretical analysis with numerical simulations, our findings reveal that spatial heterogeneity can increase the risk of viral infection within the host. However, the mobility of infected cells and viruses may serve to diminish these risks.
期刊介绍:
The aim of the journal is to provide an international forum for the dissemination of up-to-date information in the fields of the mathematics and computers, in particular (but not exclusively) as they apply to the dynamics of systems, their simulation and scientific computation in general. Published material ranges from short, concise research papers to more general tutorial articles.
Mathematics and Computers in Simulation, published monthly, is the official organ of IMACS, the International Association for Mathematics and Computers in Simulation (Formerly AICA). This Association, founded in 1955 and legally incorporated in 1956 is a member of FIACC (the Five International Associations Coordinating Committee), together with IFIP, IFAV, IFORS and IMEKO.
Topics covered by the journal include mathematical tools in:
•The foundations of systems modelling
•Numerical analysis and the development of algorithms for simulation
They also include considerations about computer hardware for simulation and about special software and compilers.
The journal also publishes articles concerned with specific applications of modelling and simulation in science and engineering, with relevant applied mathematics, the general philosophy of systems simulation, and their impact on disciplinary and interdisciplinary research.
The journal includes a Book Review section -- and a "News on IMACS" section that contains a Calendar of future Conferences/Events and other information about the Association.