{"title":"一类具有非线性阈值控制的流行病Filippov系统的滑动动力学和余维2分岔","authors":"Qian Li , Yujia Zhang , Biao Tang","doi":"10.1016/j.matcom.2025.09.024","DOIUrl":null,"url":null,"abstract":"<div><div>The implementation of preventive and control measures for major infectious diseases is often influenced by a multitude of factors, including the progression of infectious diseases, the current epidemic status, and the population size of various disease states. This paper introduces a threshold control strategy based on a non-smooth Filippov system, wherein the weighted sum of the susceptible population size and its change rate determines whether to enforce vaccination and isolation measures. We investigate the impact of this strategy on the dynamics of infectious disease transmission and analyze the effects of intermittent vaccination and isolation strategies with nonlinear recovery and threshold control functions. Based on the dynamics of subsystems, we analyze the sliding mode and the properties of the sliding regions, as well as the existence of the pseudo-equilibria. Additionally, we analyze the codimension-1 boundary equilibrium bifurcations of the proposed system, including boundary node bifurcation, boundary stable/unstable focus bifurcation, and boundary unstable-stable focus bifurcation. Leveraging the rich codimension-1 boundary equilibrium bifurcations, we explore two types of codimension-2 bifurcations and numerically illustrate the homoclinic boundary focus bifurcation and boundary Hopf bifurcation. Through an in-depth examination of boundary equilibrium bifurcations, we discover that the proposed system displays complex dynamical behaviors under different parameter values, including the emergence of new limit cycles, saddle–node bifurcations and grazing bifurcations of limit cycles. The main results indicate that under a specific control strategy, there exists a threshold value for the weighted sum of the size and change rate of the susceptible population that can effectively control the spread of infectious diseases. Moreover, whether the infected population remains low is contingent on the system’s initial state. Consequently, tailored and comprehensive control strategies must be devised to address the distinct characteristics of different population groups.</div></div>","PeriodicalId":49856,"journal":{"name":"Mathematics and Computers in Simulation","volume":"241 ","pages":"Pages 704-726"},"PeriodicalIF":4.4000,"publicationDate":"2025-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sliding dynamics and codimension-2 bifurcations of an epidemic Filippov system with nonlinear threshold control\",\"authors\":\"Qian Li , Yujia Zhang , Biao Tang\",\"doi\":\"10.1016/j.matcom.2025.09.024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The implementation of preventive and control measures for major infectious diseases is often influenced by a multitude of factors, including the progression of infectious diseases, the current epidemic status, and the population size of various disease states. This paper introduces a threshold control strategy based on a non-smooth Filippov system, wherein the weighted sum of the susceptible population size and its change rate determines whether to enforce vaccination and isolation measures. We investigate the impact of this strategy on the dynamics of infectious disease transmission and analyze the effects of intermittent vaccination and isolation strategies with nonlinear recovery and threshold control functions. Based on the dynamics of subsystems, we analyze the sliding mode and the properties of the sliding regions, as well as the existence of the pseudo-equilibria. Additionally, we analyze the codimension-1 boundary equilibrium bifurcations of the proposed system, including boundary node bifurcation, boundary stable/unstable focus bifurcation, and boundary unstable-stable focus bifurcation. Leveraging the rich codimension-1 boundary equilibrium bifurcations, we explore two types of codimension-2 bifurcations and numerically illustrate the homoclinic boundary focus bifurcation and boundary Hopf bifurcation. Through an in-depth examination of boundary equilibrium bifurcations, we discover that the proposed system displays complex dynamical behaviors under different parameter values, including the emergence of new limit cycles, saddle–node bifurcations and grazing bifurcations of limit cycles. The main results indicate that under a specific control strategy, there exists a threshold value for the weighted sum of the size and change rate of the susceptible population that can effectively control the spread of infectious diseases. Moreover, whether the infected population remains low is contingent on the system’s initial state. Consequently, tailored and comprehensive control strategies must be devised to address the distinct characteristics of different population groups.</div></div>\",\"PeriodicalId\":49856,\"journal\":{\"name\":\"Mathematics and Computers in Simulation\",\"volume\":\"241 \",\"pages\":\"Pages 704-726\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematics and Computers in Simulation\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378475425004045\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics and Computers in Simulation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378475425004045","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Sliding dynamics and codimension-2 bifurcations of an epidemic Filippov system with nonlinear threshold control
The implementation of preventive and control measures for major infectious diseases is often influenced by a multitude of factors, including the progression of infectious diseases, the current epidemic status, and the population size of various disease states. This paper introduces a threshold control strategy based on a non-smooth Filippov system, wherein the weighted sum of the susceptible population size and its change rate determines whether to enforce vaccination and isolation measures. We investigate the impact of this strategy on the dynamics of infectious disease transmission and analyze the effects of intermittent vaccination and isolation strategies with nonlinear recovery and threshold control functions. Based on the dynamics of subsystems, we analyze the sliding mode and the properties of the sliding regions, as well as the existence of the pseudo-equilibria. Additionally, we analyze the codimension-1 boundary equilibrium bifurcations of the proposed system, including boundary node bifurcation, boundary stable/unstable focus bifurcation, and boundary unstable-stable focus bifurcation. Leveraging the rich codimension-1 boundary equilibrium bifurcations, we explore two types of codimension-2 bifurcations and numerically illustrate the homoclinic boundary focus bifurcation and boundary Hopf bifurcation. Through an in-depth examination of boundary equilibrium bifurcations, we discover that the proposed system displays complex dynamical behaviors under different parameter values, including the emergence of new limit cycles, saddle–node bifurcations and grazing bifurcations of limit cycles. The main results indicate that under a specific control strategy, there exists a threshold value for the weighted sum of the size and change rate of the susceptible population that can effectively control the spread of infectious diseases. Moreover, whether the infected population remains low is contingent on the system’s initial state. Consequently, tailored and comprehensive control strategies must be devised to address the distinct characteristics of different population groups.
期刊介绍:
The aim of the journal is to provide an international forum for the dissemination of up-to-date information in the fields of the mathematics and computers, in particular (but not exclusively) as they apply to the dynamics of systems, their simulation and scientific computation in general. Published material ranges from short, concise research papers to more general tutorial articles.
Mathematics and Computers in Simulation, published monthly, is the official organ of IMACS, the International Association for Mathematics and Computers in Simulation (Formerly AICA). This Association, founded in 1955 and legally incorporated in 1956 is a member of FIACC (the Five International Associations Coordinating Committee), together with IFIP, IFAV, IFORS and IMEKO.
Topics covered by the journal include mathematical tools in:
•The foundations of systems modelling
•Numerical analysis and the development of algorithms for simulation
They also include considerations about computer hardware for simulation and about special software and compilers.
The journal also publishes articles concerned with specific applications of modelling and simulation in science and engineering, with relevant applied mathematics, the general philosophy of systems simulation, and their impact on disciplinary and interdisciplinary research.
The journal includes a Book Review section -- and a "News on IMACS" section that contains a Calendar of future Conferences/Events and other information about the Association.