保持结构的点云补全与粗到精信息分类

IF 3.1 4区 计算机科学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS
Seema Kumari , Srimanta Mandal , Shanmuganathan Raman
{"title":"保持结构的点云补全与粗到精信息分类","authors":"Seema Kumari ,&nbsp;Srimanta Mandal ,&nbsp;Shanmuganathan Raman","doi":"10.1016/j.jvcir.2025.104591","DOIUrl":null,"url":null,"abstract":"<div><div>Point clouds are the predominant data structure for representing 3D shapes. However, captured point clouds are often partial due to practical constraints, necessitating point cloud completion. In this paper, we propose a novel deep network architecture that preserves the structure of available points while incorporating coarse-to-fine information to generate dense and consistent point clouds. Our network comprises three sub-networks: Coarse-to-Fine, Structure, and Tail. The Coarse-to-Fine sub-net extracts multi-scale features, while the Structure sub-net utilizes a stacked auto-encoder with weighted skip connections to preserve structural information. The fused features are then processed by the Tail sub-net to produce a dense point cloud. Additionally, we demonstrate the effectiveness of our structure-preserving approach in point cloud classification by proposing a classification architecture based on the Structure sub-net. Experimental results show that our method outperforms existing approaches in both tasks, highlighting the importance of preserving structural information and incorporating coarse-to-fine details.</div></div>","PeriodicalId":54755,"journal":{"name":"Journal of Visual Communication and Image Representation","volume":"112 ","pages":"Article 104591"},"PeriodicalIF":3.1000,"publicationDate":"2025-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Structure preserving point cloud completion and classification with coarse-to-fine information\",\"authors\":\"Seema Kumari ,&nbsp;Srimanta Mandal ,&nbsp;Shanmuganathan Raman\",\"doi\":\"10.1016/j.jvcir.2025.104591\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Point clouds are the predominant data structure for representing 3D shapes. However, captured point clouds are often partial due to practical constraints, necessitating point cloud completion. In this paper, we propose a novel deep network architecture that preserves the structure of available points while incorporating coarse-to-fine information to generate dense and consistent point clouds. Our network comprises three sub-networks: Coarse-to-Fine, Structure, and Tail. The Coarse-to-Fine sub-net extracts multi-scale features, while the Structure sub-net utilizes a stacked auto-encoder with weighted skip connections to preserve structural information. The fused features are then processed by the Tail sub-net to produce a dense point cloud. Additionally, we demonstrate the effectiveness of our structure-preserving approach in point cloud classification by proposing a classification architecture based on the Structure sub-net. Experimental results show that our method outperforms existing approaches in both tasks, highlighting the importance of preserving structural information and incorporating coarse-to-fine details.</div></div>\",\"PeriodicalId\":54755,\"journal\":{\"name\":\"Journal of Visual Communication and Image Representation\",\"volume\":\"112 \",\"pages\":\"Article 104591\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Visual Communication and Image Representation\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1047320325002056\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Visual Communication and Image Representation","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1047320325002056","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

点云是表示三维形状的主要数据结构。然而,由于实际条件的限制,捕获的点云往往是局部的,需要点云补全。在本文中,我们提出了一种新的深度网络架构,该架构保留了可用点的结构,同时结合了粗到细的信息来生成密集和一致的点云。我们的网络包括三个子网络:粗到精、结构和尾。粗到精子网提取多尺度特征,而结构子网利用加权跳跃连接的堆叠自编码器来保留结构信息。融合后的特征由尾子网络进行处理,生成密集的点云。此外,我们提出了一种基于结构子网络的分类体系结构,证明了我们的结构保持方法在点云分类中的有效性。实验结果表明,我们的方法在这两个任务中都优于现有的方法,突出了保留结构信息和结合粗到细细节的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Structure preserving point cloud completion and classification with coarse-to-fine information
Point clouds are the predominant data structure for representing 3D shapes. However, captured point clouds are often partial due to practical constraints, necessitating point cloud completion. In this paper, we propose a novel deep network architecture that preserves the structure of available points while incorporating coarse-to-fine information to generate dense and consistent point clouds. Our network comprises three sub-networks: Coarse-to-Fine, Structure, and Tail. The Coarse-to-Fine sub-net extracts multi-scale features, while the Structure sub-net utilizes a stacked auto-encoder with weighted skip connections to preserve structural information. The fused features are then processed by the Tail sub-net to produce a dense point cloud. Additionally, we demonstrate the effectiveness of our structure-preserving approach in point cloud classification by proposing a classification architecture based on the Structure sub-net. Experimental results show that our method outperforms existing approaches in both tasks, highlighting the importance of preserving structural information and incorporating coarse-to-fine details.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Visual Communication and Image Representation
Journal of Visual Communication and Image Representation 工程技术-计算机:软件工程
CiteScore
5.40
自引率
11.50%
发文量
188
审稿时长
9.9 months
期刊介绍: The Journal of Visual Communication and Image Representation publishes papers on state-of-the-art visual communication and image representation, with emphasis on novel technologies and theoretical work in this multidisciplinary area of pure and applied research. The field of visual communication and image representation is considered in its broadest sense and covers both digital and analog aspects as well as processing and communication in biological visual systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信