基于自监督学习的复杂流场预测自适应掩模物理驱动神经网络

IF 5.8 1区 工程技术 Q1 ENGINEERING, AEROSPACE
Zekai Lu , Bingfeng Qian , Mingming Guo , Ming Yang , Lei Zhang
{"title":"基于自监督学习的复杂流场预测自适应掩模物理驱动神经网络","authors":"Zekai Lu ,&nbsp;Bingfeng Qian ,&nbsp;Mingming Guo ,&nbsp;Ming Yang ,&nbsp;Lei Zhang","doi":"10.1016/j.ast.2025.110966","DOIUrl":null,"url":null,"abstract":"<div><div>High-precision complex flow field prediction faces challenges in balancing accuracy, efficiency, and physical consistency. This study proposes an Adaptive coding Multi-airfoil Physics-Driven Neural Network (AMPD-NN) employing variable wall condition processing technology for unified prediction across airfoil families with thickness ratios of 6%-15% and camber variations of 0%-4%. The model uses self-supervised training based on physics conservation equation residual minimization, requiring only boundary conditions and geometric parameters while reducing labeled data dependence. Under subsonic conditions, flow field prediction errors remain within 4% with SSIM of 0.965–0.973. Lift and drag coefficient prediction errors are 2.22%-2.70% and below 5%, respectively. Transonic extrapolation validation shows increased errors of 15–16% but within acceptable ranges. Compared with ANSYS Fluent, the model achieves 78–109 × speedup for single predictions and 2.5–2.7 × improvement for batch processing while eliminating mesh generation, enabling efficient parametric analysis.</div></div>","PeriodicalId":50955,"journal":{"name":"Aerospace Science and Technology","volume":"168 ","pages":"Article 110966"},"PeriodicalIF":5.8000,"publicationDate":"2025-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adaptive mask physics-driven neural network for complex flow field prediction using self-supervised learning\",\"authors\":\"Zekai Lu ,&nbsp;Bingfeng Qian ,&nbsp;Mingming Guo ,&nbsp;Ming Yang ,&nbsp;Lei Zhang\",\"doi\":\"10.1016/j.ast.2025.110966\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>High-precision complex flow field prediction faces challenges in balancing accuracy, efficiency, and physical consistency. This study proposes an Adaptive coding Multi-airfoil Physics-Driven Neural Network (AMPD-NN) employing variable wall condition processing technology for unified prediction across airfoil families with thickness ratios of 6%-15% and camber variations of 0%-4%. The model uses self-supervised training based on physics conservation equation residual minimization, requiring only boundary conditions and geometric parameters while reducing labeled data dependence. Under subsonic conditions, flow field prediction errors remain within 4% with SSIM of 0.965–0.973. Lift and drag coefficient prediction errors are 2.22%-2.70% and below 5%, respectively. Transonic extrapolation validation shows increased errors of 15–16% but within acceptable ranges. Compared with ANSYS Fluent, the model achieves 78–109 × speedup for single predictions and 2.5–2.7 × improvement for batch processing while eliminating mesh generation, enabling efficient parametric analysis.</div></div>\",\"PeriodicalId\":50955,\"journal\":{\"name\":\"Aerospace Science and Technology\",\"volume\":\"168 \",\"pages\":\"Article 110966\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2025-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aerospace Science and Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1270963825010296\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aerospace Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1270963825010296","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0

摘要

高精度复杂流场预测在平衡精度、效率和物理一致性方面面临挑战。本文提出了一种采用变壁条件处理技术的自适应编码多翼型物理驱动神经网络(AMPD-NN),用于厚度比为6% ~ 15%、弧度变化为0% ~ 4%的翼型系列统一预测。该模型采用基于物理守恒方程残差最小化的自监督训练,只需要边界条件和几何参数,同时减少了对标记数据的依赖。亚音速条件下,流场预测误差控制在4%以内,SSIM为0.965 ~ 0.973。升力系数和阻力系数预测误差分别在2.22% ~ 2.70%和5%以下。跨音速外推验证显示误差增加了15-16%,但在可接受的范围内。与ANSYS Fluent相比,该模型单次预测速度提高78-109倍,批处理速度提高2.5-2.7倍,同时消除了网格生成,实现了高效的参数分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adaptive mask physics-driven neural network for complex flow field prediction using self-supervised learning
High-precision complex flow field prediction faces challenges in balancing accuracy, efficiency, and physical consistency. This study proposes an Adaptive coding Multi-airfoil Physics-Driven Neural Network (AMPD-NN) employing variable wall condition processing technology for unified prediction across airfoil families with thickness ratios of 6%-15% and camber variations of 0%-4%. The model uses self-supervised training based on physics conservation equation residual minimization, requiring only boundary conditions and geometric parameters while reducing labeled data dependence. Under subsonic conditions, flow field prediction errors remain within 4% with SSIM of 0.965–0.973. Lift and drag coefficient prediction errors are 2.22%-2.70% and below 5%, respectively. Transonic extrapolation validation shows increased errors of 15–16% but within acceptable ranges. Compared with ANSYS Fluent, the model achieves 78–109 × speedup for single predictions and 2.5–2.7 × improvement for batch processing while eliminating mesh generation, enabling efficient parametric analysis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Aerospace Science and Technology
Aerospace Science and Technology 工程技术-工程:宇航
CiteScore
10.30
自引率
28.60%
发文量
654
审稿时长
54 days
期刊介绍: Aerospace Science and Technology publishes articles of outstanding scientific quality. Each article is reviewed by two referees. The journal welcomes papers from a wide range of countries. This journal publishes original papers, review articles and short communications related to all fields of aerospace research, fundamental and applied, potential applications of which are clearly related to: • The design and the manufacture of aircraft, helicopters, missiles, launchers and satellites • The control of their environment • The study of various systems they are involved in, as supports or as targets. Authors are invited to submit papers on new advances in the following topics to aerospace applications: • Fluid dynamics • Energetics and propulsion • Materials and structures • Flight mechanics • Navigation, guidance and control • Acoustics • Optics • Electromagnetism and radar • Signal and image processing • Information processing • Data fusion • Decision aid • Human behaviour • Robotics and intelligent systems • Complex system engineering. Etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信