Ming Liu , Yanli Chen , Yonghui Zhou , Bingbing Tan , Yue Li , Hanzhou Wu
{"title":"抗相机拍摄的鲁棒图像水印的自动定位和检测","authors":"Ming Liu , Yanli Chen , Yonghui Zhou , Bingbing Tan , Yue Li , Hanzhou Wu","doi":"10.1016/j.jisa.2025.104250","DOIUrl":null,"url":null,"abstract":"<div><div>Robust image watermarking that can resist camera shooting has become an active research topic in recent years due to the increasing demand for preventing sensitive information displayed on computer screens from being captured. However, many mainstream schemes require human assistance during the watermark detection process and cannot adapt to scenarios that require processing a large number of images. Although deep learning-based schemes enable end-to-end watermark embedding and detection, their limited generalization ability makes them vulnerable to failure in complex scenarios. In this paper, we propose a carefully crafted watermarking system that can resist camera shooting. The proposed scheme deals with two important problems: automatic watermark localization (AWL) and automatic watermark detection (AWD). AWL automatically identifies the region of interest (RoI), which contains watermark information, in the camera-shooting image by analyzing the local statistical characteristics. Meanwhile, AWD extracts the hidden watermark from the identified RoI after applying perspective correction. Compared with previous works, the proposed scheme is fully automatic, making it ideal for application scenarios. Furthermore, the proposed scheme is not limited to any specific watermark embedding strategy, allowing for improvements in the watermark embedding and extraction procedure. Extensive experimental results show that the AWL can achieve average 85.2% localization accuracy, and the AWD can automatically and reliably extracted authentication data extraction under certain conditions. The experimental results demonstrate the superiority and applicability of the proposed approach.</div></div>","PeriodicalId":48638,"journal":{"name":"Journal of Information Security and Applications","volume":"94 ","pages":"Article 104250"},"PeriodicalIF":3.7000,"publicationDate":"2025-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Automated localization and detection for robust image watermarking resistant to camera shooting\",\"authors\":\"Ming Liu , Yanli Chen , Yonghui Zhou , Bingbing Tan , Yue Li , Hanzhou Wu\",\"doi\":\"10.1016/j.jisa.2025.104250\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Robust image watermarking that can resist camera shooting has become an active research topic in recent years due to the increasing demand for preventing sensitive information displayed on computer screens from being captured. However, many mainstream schemes require human assistance during the watermark detection process and cannot adapt to scenarios that require processing a large number of images. Although deep learning-based schemes enable end-to-end watermark embedding and detection, their limited generalization ability makes them vulnerable to failure in complex scenarios. In this paper, we propose a carefully crafted watermarking system that can resist camera shooting. The proposed scheme deals with two important problems: automatic watermark localization (AWL) and automatic watermark detection (AWD). AWL automatically identifies the region of interest (RoI), which contains watermark information, in the camera-shooting image by analyzing the local statistical characteristics. Meanwhile, AWD extracts the hidden watermark from the identified RoI after applying perspective correction. Compared with previous works, the proposed scheme is fully automatic, making it ideal for application scenarios. Furthermore, the proposed scheme is not limited to any specific watermark embedding strategy, allowing for improvements in the watermark embedding and extraction procedure. Extensive experimental results show that the AWL can achieve average 85.2% localization accuracy, and the AWD can automatically and reliably extracted authentication data extraction under certain conditions. The experimental results demonstrate the superiority and applicability of the proposed approach.</div></div>\",\"PeriodicalId\":48638,\"journal\":{\"name\":\"Journal of Information Security and Applications\",\"volume\":\"94 \",\"pages\":\"Article 104250\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2025-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Information Security and Applications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S221421262500287X\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Information Security and Applications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S221421262500287X","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Automated localization and detection for robust image watermarking resistant to camera shooting
Robust image watermarking that can resist camera shooting has become an active research topic in recent years due to the increasing demand for preventing sensitive information displayed on computer screens from being captured. However, many mainstream schemes require human assistance during the watermark detection process and cannot adapt to scenarios that require processing a large number of images. Although deep learning-based schemes enable end-to-end watermark embedding and detection, their limited generalization ability makes them vulnerable to failure in complex scenarios. In this paper, we propose a carefully crafted watermarking system that can resist camera shooting. The proposed scheme deals with two important problems: automatic watermark localization (AWL) and automatic watermark detection (AWD). AWL automatically identifies the region of interest (RoI), which contains watermark information, in the camera-shooting image by analyzing the local statistical characteristics. Meanwhile, AWD extracts the hidden watermark from the identified RoI after applying perspective correction. Compared with previous works, the proposed scheme is fully automatic, making it ideal for application scenarios. Furthermore, the proposed scheme is not limited to any specific watermark embedding strategy, allowing for improvements in the watermark embedding and extraction procedure. Extensive experimental results show that the AWL can achieve average 85.2% localization accuracy, and the AWD can automatically and reliably extracted authentication data extraction under certain conditions. The experimental results demonstrate the superiority and applicability of the proposed approach.
期刊介绍:
Journal of Information Security and Applications (JISA) focuses on the original research and practice-driven applications with relevance to information security and applications. JISA provides a common linkage between a vibrant scientific and research community and industry professionals by offering a clear view on modern problems and challenges in information security, as well as identifying promising scientific and "best-practice" solutions. JISA issues offer a balance between original research work and innovative industrial approaches by internationally renowned information security experts and researchers.