AmpC β-内酰胺酶:ESKAPE病原菌耐药的关键

IF 6.2 Q1 Immunology and Microbiology
Deeksha Pandey , Isha Gupta , Dinesh Gupta
{"title":"AmpC β-内酰胺酶:ESKAPE病原菌耐药的关键","authors":"Deeksha Pandey ,&nbsp;Isha Gupta ,&nbsp;Dinesh Gupta","doi":"10.1016/j.tcsw.2025.100154","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>AmpC β-lactamases (<em>blaAmpC</em>) are essential drivers of antimicrobial resistance (AMR) in ESKAPE pathogens, bacteria that cause hospital-acquired infections. Understanding AmpC enzymes is essential for uncovering resistance mechanisms and guiding antimicrobial strategies. We analyzed <em>blaAmpC</em> presence, genomic location, copy number, sequence variability, and evolutionary traits in ESKAPE pathogens.</div></div><div><h3>Results</h3><div>We identified 1790 AmpC enzymes in 4713 complete genomes, classified into nine enzyme groups. Consistent with known taxonomic profiles, no class C β-lactamases were detected in Gram-positive bacteria (<em>Staphylococcus aureus</em> and <em>Enterococcus faecium</em>). <em>Acinetobacter baumannii</em> exhibited the highest occurrence of class C β-lactamases, with <em>Enterobacter</em> spp. showing the second highest prevalence, followed by <em>Pseudomonas aeruginosa</em> and <em>Klebsiella pneumoniae</em>. The largest enzyme group, ADC was restricted to <em>A. baumannii</em>; similarly, ACC, ACT, CMH, and MIR to <em>Enterobacter</em> spp.; and PDC and PIB to <em>P. aeruginosa.</em> Phylogenetic analysis showed divergence among some groups and closer evolutionary relationships in others. Functional Motif analysis revealed conserved catalytic residues across all groups except PIB. Instead of the canonical YXN and KTG motifs, PIB contains YST and AQG variants, respectively. Because of these variations, PIB's ability to bind cephalosporins decreases while enhancing their activity against carbapenems.</div></div><div><h3>Conclusions</h3><div>We identified 1790 AmpC enzymes in nine distinct groups across ESKAPE pathogens, with species-specific distribution patterns and notable absence in Gram-positive bacteria. The PIB enzyme group demonstrated unique motif variants (YST/AQG) conferring carbapenem resistance, while other groups maintained conserved catalytic motifs. Phylogenetic analysis revealed evolutionary divergence and horizontal gene transfer potential, emphasizing the need for targeted therapeutic approaches against AmpC-mediated resistance.</div></div>","PeriodicalId":36539,"journal":{"name":"Cell Surface","volume":"14 ","pages":"Article 100154"},"PeriodicalIF":6.2000,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"AmpC β-lactamases: A key to antibiotic resistance in ESKAPE pathogens\",\"authors\":\"Deeksha Pandey ,&nbsp;Isha Gupta ,&nbsp;Dinesh Gupta\",\"doi\":\"10.1016/j.tcsw.2025.100154\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><div>AmpC β-lactamases (<em>blaAmpC</em>) are essential drivers of antimicrobial resistance (AMR) in ESKAPE pathogens, bacteria that cause hospital-acquired infections. Understanding AmpC enzymes is essential for uncovering resistance mechanisms and guiding antimicrobial strategies. We analyzed <em>blaAmpC</em> presence, genomic location, copy number, sequence variability, and evolutionary traits in ESKAPE pathogens.</div></div><div><h3>Results</h3><div>We identified 1790 AmpC enzymes in 4713 complete genomes, classified into nine enzyme groups. Consistent with known taxonomic profiles, no class C β-lactamases were detected in Gram-positive bacteria (<em>Staphylococcus aureus</em> and <em>Enterococcus faecium</em>). <em>Acinetobacter baumannii</em> exhibited the highest occurrence of class C β-lactamases, with <em>Enterobacter</em> spp. showing the second highest prevalence, followed by <em>Pseudomonas aeruginosa</em> and <em>Klebsiella pneumoniae</em>. The largest enzyme group, ADC was restricted to <em>A. baumannii</em>; similarly, ACC, ACT, CMH, and MIR to <em>Enterobacter</em> spp.; and PDC and PIB to <em>P. aeruginosa.</em> Phylogenetic analysis showed divergence among some groups and closer evolutionary relationships in others. Functional Motif analysis revealed conserved catalytic residues across all groups except PIB. Instead of the canonical YXN and KTG motifs, PIB contains YST and AQG variants, respectively. Because of these variations, PIB's ability to bind cephalosporins decreases while enhancing their activity against carbapenems.</div></div><div><h3>Conclusions</h3><div>We identified 1790 AmpC enzymes in nine distinct groups across ESKAPE pathogens, with species-specific distribution patterns and notable absence in Gram-positive bacteria. The PIB enzyme group demonstrated unique motif variants (YST/AQG) conferring carbapenem resistance, while other groups maintained conserved catalytic motifs. Phylogenetic analysis revealed evolutionary divergence and horizontal gene transfer potential, emphasizing the need for targeted therapeutic approaches against AmpC-mediated resistance.</div></div>\",\"PeriodicalId\":36539,\"journal\":{\"name\":\"Cell Surface\",\"volume\":\"14 \",\"pages\":\"Article 100154\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2025-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Surface\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2468233025000143\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Immunology and Microbiology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Surface","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468233025000143","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Immunology and Microbiology","Score":null,"Total":0}
引用次数: 0

摘要

背景dampc β-内酰胺酶(blaAmpC)是ESKAPE病原体(引起医院获得性感染的细菌)中抗菌素耐药性(AMR)的重要驱动因素。了解AmpC酶对于揭示耐药机制和指导抗菌策略至关重要。我们分析了blaAmpC在ESKAPE病原体中的存在、基因组位置、拷贝数、序列变异性和进化特征。结果在4713个完整基因组中鉴定出1790个AmpC酶,分为9个酶群。与已知的分类特征一致,革兰氏阳性菌(金黄色葡萄球菌和屎肠球菌)中未检测到C类β-内酰胺酶。C类β-内酰胺酶的发生率以鲍曼不动杆菌最高,其次为肠杆菌,其次为铜绿假单胞菌和肺炎克雷伯菌。最大的酶群ADC仅限于鲍曼不动杆菌;类似地,ACC, ACT, CMH和MIR对肠杆菌;铜绿假单胞菌的PDC和PIB。系统发育分析表明,一些群体之间存在分歧,而另一些群体的进化关系更密切。功能基序分析显示,除PIB外,所有基团都有保守的催化残基。PIB分别包含YST和AQG变体,而不是典型的YXN和KTG基序。由于这些变化,PIB结合头孢菌素的能力下降,同时增强其对碳青霉烯类的活性。结论在ESKAPE病原菌的9个不同类群中鉴定出1790种AmpC酶,具有种特异性分布模式,在革兰氏阳性菌中明显缺失。PIB酶组显示出独特的基序变异(YST/AQG),赋予碳青霉烯抗性,而其他组保持保守的催化基序。系统发育分析揭示了进化差异和水平基因转移潜力,强调了针对ampc介导的耐药性的靶向治疗方法的必要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
AmpC β-lactamases: A key to antibiotic resistance in ESKAPE pathogens

Background

AmpC β-lactamases (blaAmpC) are essential drivers of antimicrobial resistance (AMR) in ESKAPE pathogens, bacteria that cause hospital-acquired infections. Understanding AmpC enzymes is essential for uncovering resistance mechanisms and guiding antimicrobial strategies. We analyzed blaAmpC presence, genomic location, copy number, sequence variability, and evolutionary traits in ESKAPE pathogens.

Results

We identified 1790 AmpC enzymes in 4713 complete genomes, classified into nine enzyme groups. Consistent with known taxonomic profiles, no class C β-lactamases were detected in Gram-positive bacteria (Staphylococcus aureus and Enterococcus faecium). Acinetobacter baumannii exhibited the highest occurrence of class C β-lactamases, with Enterobacter spp. showing the second highest prevalence, followed by Pseudomonas aeruginosa and Klebsiella pneumoniae. The largest enzyme group, ADC was restricted to A. baumannii; similarly, ACC, ACT, CMH, and MIR to Enterobacter spp.; and PDC and PIB to P. aeruginosa. Phylogenetic analysis showed divergence among some groups and closer evolutionary relationships in others. Functional Motif analysis revealed conserved catalytic residues across all groups except PIB. Instead of the canonical YXN and KTG motifs, PIB contains YST and AQG variants, respectively. Because of these variations, PIB's ability to bind cephalosporins decreases while enhancing their activity against carbapenems.

Conclusions

We identified 1790 AmpC enzymes in nine distinct groups across ESKAPE pathogens, with species-specific distribution patterns and notable absence in Gram-positive bacteria. The PIB enzyme group demonstrated unique motif variants (YST/AQG) conferring carbapenem resistance, while other groups maintained conserved catalytic motifs. Phylogenetic analysis revealed evolutionary divergence and horizontal gene transfer potential, emphasizing the need for targeted therapeutic approaches against AmpC-mediated resistance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cell Surface
Cell Surface Immunology and Microbiology-Applied Microbiology and Biotechnology
CiteScore
6.10
自引率
0.00%
发文量
18
审稿时长
49 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信