梯度增强、线性回归、决策树和投票算法在分形环境下分离地球化学异常区的性能比较

IF 4.2
Mirmahdi Seyedrahimi-Niaraq , Hossein Mahdiyanfar , Mohammad hossein Olyaee
{"title":"梯度增强、线性回归、决策树和投票算法在分形环境下分离地球化学异常区的性能比较","authors":"Mirmahdi Seyedrahimi-Niaraq ,&nbsp;Hossein Mahdiyanfar ,&nbsp;Mohammad hossein Olyaee","doi":"10.1016/j.aiig.2025.100156","DOIUrl":null,"url":null,"abstract":"<div><div>In this investigation, the Gradient Boosting (GB), Linear Regression (LR), Decision Tree (DT), and Voting algorithms were applied to predict the distribution pattern of Au geochemical data. Trace and indicator elements, including Mo, Cu, Pb, Zn, Ag, Ni, Co, Mn, Fe, and As, were used with these machine learning algorithms (MLAs) to predict Au concentration values in the Doostbigloo porphyry Cu-Au-Mo mineralization area. The performance of the models was evaluated using the Mean Absolute Percentage Error (MAPE) and Root Mean Square Error (RMSE) metrics. The proposed ensemble Voting algorithm outperformed the other models, yielding more accurate predictions according to both metrics. The predicted data from the GB, LR, DT, and Voting MLAs were modeled using the Concentration-Area fractal method, and Au geochemical anomalies were mapped. To compare and validate the results, factors such as the location of the mineral deposits, their surface extent, and mineralization trend were considered. The results indicate that integrating hybrid MLAs with fractal modeling significantly improves geochemical prospectivity mapping. Among the four models, three (DT, GB, Voting) accurately identified both mineral deposits. The LR model, however, only identified Deposit I (central), and its mineralization trend diverged from the field data. The GB and Voting models produced similar results, with their final maps derived from fractal modeling showing the same anomalous areas. The anomaly boundaries identified by these two models are consistent with the two known reserves in the region. The results and plots related to prediction indicators and error rates for these two models also show high similarity, with lower error rates than the other models. Notably, the Voting model demonstrated superior performance in accurately delineating mineral deposit locations and identifying realistic mineralization trends while minimizing false anomalies.</div></div>","PeriodicalId":100124,"journal":{"name":"Artificial Intelligence in Geosciences","volume":"6 2","pages":"Article 100156"},"PeriodicalIF":4.2000,"publicationDate":"2025-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparison of the performance of gradient boost, linear regression, decision tree, and voting algorithms to separate geochemical anomalies areas in the fractal environment\",\"authors\":\"Mirmahdi Seyedrahimi-Niaraq ,&nbsp;Hossein Mahdiyanfar ,&nbsp;Mohammad hossein Olyaee\",\"doi\":\"10.1016/j.aiig.2025.100156\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this investigation, the Gradient Boosting (GB), Linear Regression (LR), Decision Tree (DT), and Voting algorithms were applied to predict the distribution pattern of Au geochemical data. Trace and indicator elements, including Mo, Cu, Pb, Zn, Ag, Ni, Co, Mn, Fe, and As, were used with these machine learning algorithms (MLAs) to predict Au concentration values in the Doostbigloo porphyry Cu-Au-Mo mineralization area. The performance of the models was evaluated using the Mean Absolute Percentage Error (MAPE) and Root Mean Square Error (RMSE) metrics. The proposed ensemble Voting algorithm outperformed the other models, yielding more accurate predictions according to both metrics. The predicted data from the GB, LR, DT, and Voting MLAs were modeled using the Concentration-Area fractal method, and Au geochemical anomalies were mapped. To compare and validate the results, factors such as the location of the mineral deposits, their surface extent, and mineralization trend were considered. The results indicate that integrating hybrid MLAs with fractal modeling significantly improves geochemical prospectivity mapping. Among the four models, three (DT, GB, Voting) accurately identified both mineral deposits. The LR model, however, only identified Deposit I (central), and its mineralization trend diverged from the field data. The GB and Voting models produced similar results, with their final maps derived from fractal modeling showing the same anomalous areas. The anomaly boundaries identified by these two models are consistent with the two known reserves in the region. The results and plots related to prediction indicators and error rates for these two models also show high similarity, with lower error rates than the other models. Notably, the Voting model demonstrated superior performance in accurately delineating mineral deposit locations and identifying realistic mineralization trends while minimizing false anomalies.</div></div>\",\"PeriodicalId\":100124,\"journal\":{\"name\":\"Artificial Intelligence in Geosciences\",\"volume\":\"6 2\",\"pages\":\"Article 100156\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2025-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Artificial Intelligence in Geosciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666544125000528\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Intelligence in Geosciences","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666544125000528","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

采用梯度增强(GB)、线性回归(LR)、决策树(DT)和投票(Voting)算法预测Au地球化学数据的分布模式。利用Mo、Cu、Pb、Zn、Ag、Ni、Co、Mn、Fe、As等微量元素和指示元素,结合机器学习算法(MLAs)预测了Doostbigloo斑岩Cu-Au-Mo矿化区Au的富集值。使用平均绝对百分比误差(MAPE)和均方根误差(RMSE)指标评估模型的性能。所提出的集成投票算法优于其他模型,根据两个指标产生更准确的预测。采用浓度-面积分形方法对GB、LR、DT和Voting MLAs预测数据进行建模,绘制了Au地球化学异常图。为了比较和验证结果,考虑了矿床的位置、地表范围和矿化趋势等因素。结果表明,将混合MLAs与分形建模相结合,显著提高了地球化学找矿能力。四种模型中,DT、GB、Voting三种模型均能准确识别两个矿床。然而,LR模型只识别了1号矿床(中部),其成矿趋势与现场数据不符。GB和Voting模型产生了类似的结果,它们的最终地图源自分形模型,显示了相同的异常区域。这两种模型识别的异常边界与该地区已知的两个储量一致。两种模型的预测指标和错误率相关的结果和图也显示出较高的相似性,错误率低于其他模型。值得注意的是,Voting模型在准确描绘矿床位置和识别实际矿化趋势方面表现出色,同时最大限度地减少了虚假异常。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comparison of the performance of gradient boost, linear regression, decision tree, and voting algorithms to separate geochemical anomalies areas in the fractal environment
In this investigation, the Gradient Boosting (GB), Linear Regression (LR), Decision Tree (DT), and Voting algorithms were applied to predict the distribution pattern of Au geochemical data. Trace and indicator elements, including Mo, Cu, Pb, Zn, Ag, Ni, Co, Mn, Fe, and As, were used with these machine learning algorithms (MLAs) to predict Au concentration values in the Doostbigloo porphyry Cu-Au-Mo mineralization area. The performance of the models was evaluated using the Mean Absolute Percentage Error (MAPE) and Root Mean Square Error (RMSE) metrics. The proposed ensemble Voting algorithm outperformed the other models, yielding more accurate predictions according to both metrics. The predicted data from the GB, LR, DT, and Voting MLAs were modeled using the Concentration-Area fractal method, and Au geochemical anomalies were mapped. To compare and validate the results, factors such as the location of the mineral deposits, their surface extent, and mineralization trend were considered. The results indicate that integrating hybrid MLAs with fractal modeling significantly improves geochemical prospectivity mapping. Among the four models, three (DT, GB, Voting) accurately identified both mineral deposits. The LR model, however, only identified Deposit I (central), and its mineralization trend diverged from the field data. The GB and Voting models produced similar results, with their final maps derived from fractal modeling showing the same anomalous areas. The anomaly boundaries identified by these two models are consistent with the two known reserves in the region. The results and plots related to prediction indicators and error rates for these two models also show high similarity, with lower error rates than the other models. Notably, the Voting model demonstrated superior performance in accurately delineating mineral deposit locations and identifying realistic mineralization trends while minimizing false anomalies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信