利用可控三维磁场刺激调整Ti-316L异种锁孔激光焊接的微观结构和界面完整性

IF 4 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Pinku Yadav , Simone Gervasoni , David Sargent , Patrik Hoffmann , Sergey Shevchik
{"title":"利用可控三维磁场刺激调整Ti-316L异种锁孔激光焊接的微观结构和界面完整性","authors":"Pinku Yadav ,&nbsp;Simone Gervasoni ,&nbsp;David Sargent ,&nbsp;Patrik Hoffmann ,&nbsp;Sergey Shevchik","doi":"10.1016/j.jajp.2025.100352","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigates the influence of externally applied magnetic fields—both alternating and rotating—on the microstructural evolution and interface integrity of laser-welded dissimilar joints between titanium and 316 L stainless steel. A fiber laser system was employed to perform keyhole-mode lap welding, with various magnetic field orientations introduced to actively manipulate the melt pool dynamics. Alternating fields (Bx, By, Bz) promoted grain refinement (reducing average grain size from 51.8 ± 4.1 µm to 36.2 ± 3.1 µm) and enhanced recrystallization (increasing the recrystallized fraction to ∼0.69), resulting in a finer microstructure and more discrete intermetallic compound (IMC) formation at the Ti–316 L interface. In contrast, rotating magnetic fields (Bxy, Byz, Bxz) encouraged coarser grain growth (increasing average grain size up to 80.1 ± 4.5 µm) and increased the presence of unrecrystallized regions (up to 0.484 fraction) due to stabilized melt flow and slower cooling rates. These conditions facilitated deeper interdiffusion and led to thicker, more continuous IMC layers, correlating with a peak microhardness of 576 ± 8 HV, potentially compromising joint integrity. The findings demonstrate that precise control of magnetic field configuration during laser processing offers a powerful tool to tailor interfacial microstructures and minimize brittle phase formation. This approach provides new opportunities to enhance the performance and reliability of dissimilar metal joints in critical structural applications.</div></div>","PeriodicalId":34313,"journal":{"name":"Journal of Advanced Joining Processes","volume":"12 ","pages":"Article 100352"},"PeriodicalIF":4.0000,"publicationDate":"2025-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tailoring microstructure and interface integrity in Ti–316L dissimilar keyhole laser welding using controlled 3d magnetic field stimulation\",\"authors\":\"Pinku Yadav ,&nbsp;Simone Gervasoni ,&nbsp;David Sargent ,&nbsp;Patrik Hoffmann ,&nbsp;Sergey Shevchik\",\"doi\":\"10.1016/j.jajp.2025.100352\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study investigates the influence of externally applied magnetic fields—both alternating and rotating—on the microstructural evolution and interface integrity of laser-welded dissimilar joints between titanium and 316 L stainless steel. A fiber laser system was employed to perform keyhole-mode lap welding, with various magnetic field orientations introduced to actively manipulate the melt pool dynamics. Alternating fields (Bx, By, Bz) promoted grain refinement (reducing average grain size from 51.8 ± 4.1 µm to 36.2 ± 3.1 µm) and enhanced recrystallization (increasing the recrystallized fraction to ∼0.69), resulting in a finer microstructure and more discrete intermetallic compound (IMC) formation at the Ti–316 L interface. In contrast, rotating magnetic fields (Bxy, Byz, Bxz) encouraged coarser grain growth (increasing average grain size up to 80.1 ± 4.5 µm) and increased the presence of unrecrystallized regions (up to 0.484 fraction) due to stabilized melt flow and slower cooling rates. These conditions facilitated deeper interdiffusion and led to thicker, more continuous IMC layers, correlating with a peak microhardness of 576 ± 8 HV, potentially compromising joint integrity. The findings demonstrate that precise control of magnetic field configuration during laser processing offers a powerful tool to tailor interfacial microstructures and minimize brittle phase formation. This approach provides new opportunities to enhance the performance and reliability of dissimilar metal joints in critical structural applications.</div></div>\",\"PeriodicalId\":34313,\"journal\":{\"name\":\"Journal of Advanced Joining Processes\",\"volume\":\"12 \",\"pages\":\"Article 100352\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2025-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Advanced Joining Processes\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666330925000731\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advanced Joining Processes","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666330925000731","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

研究了外加磁场(交变磁场和旋转磁场)对钛与316l不锈钢异种激光焊接接头显微组织演变和界面完整性的影响。采用光纤激光系统进行锁孔模式搭接焊接,并引入不同的磁场方向来主动控制熔池动力学。交替场(Bx, By, Bz)促进了晶粒细化(平均晶粒尺寸从51.8±4.1µm减小到36.2±3.1µm)和再结晶(再结晶分数增加到~ 0.69),导致ti - 316l界面处的微观结构更精细和更离散的金属间化合物(IMC)形成。相比之下,旋转磁场(Bxy, Byz, Bxz)促进了更粗的晶粒生长(平均晶粒尺寸增加到80.1±4.5µm),并且由于稳定的熔体流动和较慢的冷却速率,增加了未再结晶区域的存在(高达0.484分数)。这些条件促进了更深的相互扩散,导致更厚、更连续的IMC层,峰值显微硬度为576±8 HV,可能会损害接头的完整性。研究结果表明,在激光加工过程中精确控制磁场配置为定制界面微观结构和减少脆性相形成提供了有力的工具。这种方法为在关键结构应用中提高异种金属接头的性能和可靠性提供了新的机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tailoring microstructure and interface integrity in Ti–316L dissimilar keyhole laser welding using controlled 3d magnetic field stimulation
This study investigates the influence of externally applied magnetic fields—both alternating and rotating—on the microstructural evolution and interface integrity of laser-welded dissimilar joints between titanium and 316 L stainless steel. A fiber laser system was employed to perform keyhole-mode lap welding, with various magnetic field orientations introduced to actively manipulate the melt pool dynamics. Alternating fields (Bx, By, Bz) promoted grain refinement (reducing average grain size from 51.8 ± 4.1 µm to 36.2 ± 3.1 µm) and enhanced recrystallization (increasing the recrystallized fraction to ∼0.69), resulting in a finer microstructure and more discrete intermetallic compound (IMC) formation at the Ti–316 L interface. In contrast, rotating magnetic fields (Bxy, Byz, Bxz) encouraged coarser grain growth (increasing average grain size up to 80.1 ± 4.5 µm) and increased the presence of unrecrystallized regions (up to 0.484 fraction) due to stabilized melt flow and slower cooling rates. These conditions facilitated deeper interdiffusion and led to thicker, more continuous IMC layers, correlating with a peak microhardness of 576 ± 8 HV, potentially compromising joint integrity. The findings demonstrate that precise control of magnetic field configuration during laser processing offers a powerful tool to tailor interfacial microstructures and minimize brittle phase formation. This approach provides new opportunities to enhance the performance and reliability of dissimilar metal joints in critical structural applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.10
自引率
9.80%
发文量
58
审稿时长
44 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信