巴西初级卫生保健诊所的地理编码数据集

IF 1.4 Q3 MULTIDISCIPLINARY SCIENCES
Bruno Wichmann , Roberta Moreira Wichmann , Tiago Almeida de Oliveira , Crysttian Arantes Paixão
{"title":"巴西初级卫生保健诊所的地理编码数据集","authors":"Bruno Wichmann ,&nbsp;Roberta Moreira Wichmann ,&nbsp;Tiago Almeida de Oliveira ,&nbsp;Crysttian Arantes Paixão","doi":"10.1016/j.dib.2025.112085","DOIUrl":null,"url":null,"abstract":"<div><div>We develop a geocoded dataset of primary health care clinics in Brazil. We merge data from three publicly available sources. The first is the National Registry of Healthcare Facilities (CNES-ST), which collects the location (state, municipality, and 8-digit postal code) of all health care facilities, public or private, operating in Brazil. The second is the National Registry of Addresses for Statistical Purposes (IBGE-CNEFE), which contains the geographic coordinates of all addresses in Brazil (including 8-digit postal codes) and serves as the basis for the Brazilian census. Our approach aggregates individual (address-level) coordinates to the 8-digit postal code, and assigns coordinates to primary care clinics based on each clinics’ postal code. Using data from a third source, the IBGE shapefiles, we estimate the area of postal codes to evaluate the precision of our geo-referencing method. The unique facility identification number (cnes number) can be used to merge our georeferenced data with other publicly available databases of the Brazilian Unified Health System. The final dataset is an unbalanced panel with monthly observations about 293,698 primary care clinics’ locations (i.e. coordinates), from January 2018 to December 2023, totalling 15,455,219 observations.</div></div>","PeriodicalId":10973,"journal":{"name":"Data in Brief","volume":"63 ","pages":"Article 112085"},"PeriodicalIF":1.4000,"publicationDate":"2025-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A geocoded dataset of primary health care clinics in Brazil\",\"authors\":\"Bruno Wichmann ,&nbsp;Roberta Moreira Wichmann ,&nbsp;Tiago Almeida de Oliveira ,&nbsp;Crysttian Arantes Paixão\",\"doi\":\"10.1016/j.dib.2025.112085\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We develop a geocoded dataset of primary health care clinics in Brazil. We merge data from three publicly available sources. The first is the National Registry of Healthcare Facilities (CNES-ST), which collects the location (state, municipality, and 8-digit postal code) of all health care facilities, public or private, operating in Brazil. The second is the National Registry of Addresses for Statistical Purposes (IBGE-CNEFE), which contains the geographic coordinates of all addresses in Brazil (including 8-digit postal codes) and serves as the basis for the Brazilian census. Our approach aggregates individual (address-level) coordinates to the 8-digit postal code, and assigns coordinates to primary care clinics based on each clinics’ postal code. Using data from a third source, the IBGE shapefiles, we estimate the area of postal codes to evaluate the precision of our geo-referencing method. The unique facility identification number (cnes number) can be used to merge our georeferenced data with other publicly available databases of the Brazilian Unified Health System. The final dataset is an unbalanced panel with monthly observations about 293,698 primary care clinics’ locations (i.e. coordinates), from January 2018 to December 2023, totalling 15,455,219 observations.</div></div>\",\"PeriodicalId\":10973,\"journal\":{\"name\":\"Data in Brief\",\"volume\":\"63 \",\"pages\":\"Article 112085\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2025-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Data in Brief\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352340925008078\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Data in Brief","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352340925008078","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

我们开发了巴西初级卫生保健诊所的地理编码数据集。我们合并了来自三个公开来源的数据。第一个是国家医疗保健设施登记处(CNES-ST),它收集了在巴西运营的所有公共或私营医疗保健设施的位置(州、市和8位邮政编码)。第二个是国家地址统计登记处(IBGE-CNEFE),它包含巴西所有地址的地理坐标(包括8位邮政编码),并作为巴西人口普查的基础。我们的方法将个人(地址级)坐标聚合到8位邮政编码,并根据每个诊所的邮政编码为初级保健诊所分配坐标。使用来自第三个来源的数据,IBGE形状文件,我们估计邮政编码的面积,以评估我们的地理参考方法的精度。唯一的设施识别号码(cnes号码)可用于将我们的地理参考数据与巴西统一卫生系统的其他公开可用数据库合并。最终的数据集是一个不平衡的面板,从2018年1月到2023年12月,每月观察到293,698个初级保健诊所的位置(即坐标),总计15,455,219个观察值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A geocoded dataset of primary health care clinics in Brazil
We develop a geocoded dataset of primary health care clinics in Brazil. We merge data from three publicly available sources. The first is the National Registry of Healthcare Facilities (CNES-ST), which collects the location (state, municipality, and 8-digit postal code) of all health care facilities, public or private, operating in Brazil. The second is the National Registry of Addresses for Statistical Purposes (IBGE-CNEFE), which contains the geographic coordinates of all addresses in Brazil (including 8-digit postal codes) and serves as the basis for the Brazilian census. Our approach aggregates individual (address-level) coordinates to the 8-digit postal code, and assigns coordinates to primary care clinics based on each clinics’ postal code. Using data from a third source, the IBGE shapefiles, we estimate the area of postal codes to evaluate the precision of our geo-referencing method. The unique facility identification number (cnes number) can be used to merge our georeferenced data with other publicly available databases of the Brazilian Unified Health System. The final dataset is an unbalanced panel with monthly observations about 293,698 primary care clinics’ locations (i.e. coordinates), from January 2018 to December 2023, totalling 15,455,219 observations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Data in Brief
Data in Brief MULTIDISCIPLINARY SCIENCES-
CiteScore
3.10
自引率
0.00%
发文量
996
审稿时长
70 days
期刊介绍: Data in Brief provides a way for researchers to easily share and reuse each other''s datasets by publishing data articles that: -Thoroughly describe your data, facilitating reproducibility. -Make your data, which is often buried in supplementary material, easier to find. -Increase traffic towards associated research articles and data, leading to more citations. -Open up doors for new collaborations. Because you never know what data will be useful to someone else, Data in Brief welcomes submissions that describe data from all research areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信