通过元素取代增强SmFe11Ti的本征磁性能和相稳定性:第一性原理方法

IF 3.3 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
N. Batnyam, D. Odkhuu
{"title":"通过元素取代增强SmFe11Ti的本征磁性能和相稳定性:第一性原理方法","authors":"N. Batnyam,&nbsp;D. Odkhuu","doi":"10.1016/j.commatsci.2025.114268","DOIUrl":null,"url":null,"abstract":"<div><div>ThMn<sub>12</sub>-type SmFe<sub>11</sub>Ti has been identified as a structurally stable phase in its bulk form; however, the presence of Ti markedly suppresses its intrinsic magnetic performance. Herein, we employ density functional theory and Monte Carlo simulations to investigate partial substitution of Ti with simple metal and metalloid elements as a strategy to enhance intrinsic magnetic properties without compromising structural stability. Our results reveal that Al substitution is particularly effective, with SmFe<sub>11</sub>Al<sub>0.5</sub>Ti<sub>0.5</sub> achieving a saturation magnetization of 0.97 T and a magnetocrystalline anisotropy of 6.3 MJ/m<sup>3</sup> at room temperature. These values lead to substantial improvements in the theoretical maximum energy product, anisotropic field, and hardness parameter, exceeding those of conventional SmFe<sub>11</sub>Ti. The enhancements are attributed to modifications in the electronic energy levels of the strongly spin–orbit coupled Sm <span><math><mrow><mn>4</mn><mi>f</mi></mrow></math></span> orbitals upon elemental substitution. These findings provide a promising pathway for developing high-performance permanent magnets with reduced rare-earth content, supporting sustainable advanced permanent magnetic materials.</div></div>","PeriodicalId":10650,"journal":{"name":"Computational Materials Science","volume":"261 ","pages":"Article 114268"},"PeriodicalIF":3.3000,"publicationDate":"2025-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing intrinsic magnetic properties and phase stability in SmFe11Ti through elemental substitution: A first-principles approach\",\"authors\":\"N. Batnyam,&nbsp;D. Odkhuu\",\"doi\":\"10.1016/j.commatsci.2025.114268\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>ThMn<sub>12</sub>-type SmFe<sub>11</sub>Ti has been identified as a structurally stable phase in its bulk form; however, the presence of Ti markedly suppresses its intrinsic magnetic performance. Herein, we employ density functional theory and Monte Carlo simulations to investigate partial substitution of Ti with simple metal and metalloid elements as a strategy to enhance intrinsic magnetic properties without compromising structural stability. Our results reveal that Al substitution is particularly effective, with SmFe<sub>11</sub>Al<sub>0.5</sub>Ti<sub>0.5</sub> achieving a saturation magnetization of 0.97 T and a magnetocrystalline anisotropy of 6.3 MJ/m<sup>3</sup> at room temperature. These values lead to substantial improvements in the theoretical maximum energy product, anisotropic field, and hardness parameter, exceeding those of conventional SmFe<sub>11</sub>Ti. The enhancements are attributed to modifications in the electronic energy levels of the strongly spin–orbit coupled Sm <span><math><mrow><mn>4</mn><mi>f</mi></mrow></math></span> orbitals upon elemental substitution. These findings provide a promising pathway for developing high-performance permanent magnets with reduced rare-earth content, supporting sustainable advanced permanent magnetic materials.</div></div>\",\"PeriodicalId\":10650,\"journal\":{\"name\":\"Computational Materials Science\",\"volume\":\"261 \",\"pages\":\"Article 114268\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Materials Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0927025625006111\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Materials Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927025625006111","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

thmn12型SmFe11Ti已被确定为结构稳定相;然而,钛的存在明显抑制了其固有磁性能。在此,我们采用密度泛函理论和蒙特卡罗模拟来研究用简单金属和类金属元素部分取代Ti作为在不影响结构稳定性的情况下提高固有磁性能的策略。我们的研究结果表明,Al取代特别有效,SmFe11Al0.5Ti0.5在室温下达到0.97 T的饱和磁化强度和6.3 MJ/m3的磁晶各向异性。这些值导致理论最大能积、各向异性场和硬度参数的显著改善,超过了传统的SmFe11Ti。这种增强是由于元素取代后,强自旋轨道耦合的sm4f轨道的电子能级发生了变化。这些发现为开发低稀土含量的高性能永磁体提供了一条有希望的途径,支持可持续的先进永磁材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Enhancing intrinsic magnetic properties and phase stability in SmFe11Ti through elemental substitution: A first-principles approach

Enhancing intrinsic magnetic properties and phase stability in SmFe11Ti through elemental substitution: A first-principles approach
ThMn12-type SmFe11Ti has been identified as a structurally stable phase in its bulk form; however, the presence of Ti markedly suppresses its intrinsic magnetic performance. Herein, we employ density functional theory and Monte Carlo simulations to investigate partial substitution of Ti with simple metal and metalloid elements as a strategy to enhance intrinsic magnetic properties without compromising structural stability. Our results reveal that Al substitution is particularly effective, with SmFe11Al0.5Ti0.5 achieving a saturation magnetization of 0.97 T and a magnetocrystalline anisotropy of 6.3 MJ/m3 at room temperature. These values lead to substantial improvements in the theoretical maximum energy product, anisotropic field, and hardness parameter, exceeding those of conventional SmFe11Ti. The enhancements are attributed to modifications in the electronic energy levels of the strongly spin–orbit coupled Sm 4f orbitals upon elemental substitution. These findings provide a promising pathway for developing high-performance permanent magnets with reduced rare-earth content, supporting sustainable advanced permanent magnetic materials.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computational Materials Science
Computational Materials Science 工程技术-材料科学:综合
CiteScore
6.50
自引率
6.10%
发文量
665
审稿时长
26 days
期刊介绍: The goal of Computational Materials Science is to report on results that provide new or unique insights into, or significantly expand our understanding of, the properties of materials or phenomena associated with their design, synthesis, processing, characterization, and utilization. To be relevant to the journal, the results should be applied or applicable to specific material systems that are discussed within the submission.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信