朗道动力学方程的保结构碰撞粒子法

IF 3.8 2区 物理与天体物理 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Kai Du , Lei Li , Yongle Xie , Yang Yu
{"title":"朗道动力学方程的保结构碰撞粒子法","authors":"Kai Du ,&nbsp;Lei Li ,&nbsp;Yongle Xie ,&nbsp;Yang Yu","doi":"10.1016/j.jcp.2025.114387","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we propose and implement a structure-preserving stochastic particle method for the Landau equation. The method is based on a particle system for the Landau equation, where pairwise grazing collisions are modeled as diffusion processes. By exploiting the unique structure of the particle system and a spherical Brownian motion sampling, the method avoids additional temporal discretization of the particle system, ensuring that the discrete-time particle distributions exactly match their continuous-time counterparts. The method achieves <span><math><mrow><mi>O</mi><mo>(</mo><mi>N</mi><mo>)</mo></mrow></math></span> complexity per time step and preserves fundamental physical properties, including the conservation of mass, momentum and energy. It demonstrates strong long-time accuracy and stability in numerical experiments. Furthermore, we also apply the method to the spatially non-homogeneous equations through a case study of the Vlasov–Poisson–Landau equation.</div></div>","PeriodicalId":352,"journal":{"name":"Journal of Computational Physics","volume":"543 ","pages":"Article 114387"},"PeriodicalIF":3.8000,"publicationDate":"2025-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A structure-preserving collisional particle method for the Landau kinetic equation\",\"authors\":\"Kai Du ,&nbsp;Lei Li ,&nbsp;Yongle Xie ,&nbsp;Yang Yu\",\"doi\":\"10.1016/j.jcp.2025.114387\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we propose and implement a structure-preserving stochastic particle method for the Landau equation. The method is based on a particle system for the Landau equation, where pairwise grazing collisions are modeled as diffusion processes. By exploiting the unique structure of the particle system and a spherical Brownian motion sampling, the method avoids additional temporal discretization of the particle system, ensuring that the discrete-time particle distributions exactly match their continuous-time counterparts. The method achieves <span><math><mrow><mi>O</mi><mo>(</mo><mi>N</mi><mo>)</mo></mrow></math></span> complexity per time step and preserves fundamental physical properties, including the conservation of mass, momentum and energy. It demonstrates strong long-time accuracy and stability in numerical experiments. Furthermore, we also apply the method to the spatially non-homogeneous equations through a case study of the Vlasov–Poisson–Landau equation.</div></div>\",\"PeriodicalId\":352,\"journal\":{\"name\":\"Journal of Computational Physics\",\"volume\":\"543 \",\"pages\":\"Article 114387\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021999125006692\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021999125006692","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

本文提出并实现了朗道方程的一种保持结构的随机粒子方法。该方法基于朗道方程的粒子系统,其中对掠碰撞建模为扩散过程。该方法利用粒子系统的独特结构和球面布朗运动采样,避免了粒子系统的额外时间离散化,确保了离散时间粒子分布与连续时间粒子分布的精确匹配。该方法实现了每时间步0 (N)的复杂度,并保持了基本的物理性质,包括质量、动量和能量的守恒。数值实验表明,该方法具有较强的长期精度和稳定性。此外,我们还通过Vlasov-Poisson-Landau方程的实例研究,将该方法应用于空间非齐次方程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A structure-preserving collisional particle method for the Landau kinetic equation
In this paper, we propose and implement a structure-preserving stochastic particle method for the Landau equation. The method is based on a particle system for the Landau equation, where pairwise grazing collisions are modeled as diffusion processes. By exploiting the unique structure of the particle system and a spherical Brownian motion sampling, the method avoids additional temporal discretization of the particle system, ensuring that the discrete-time particle distributions exactly match their continuous-time counterparts. The method achieves O(N) complexity per time step and preserves fundamental physical properties, including the conservation of mass, momentum and energy. It demonstrates strong long-time accuracy and stability in numerical experiments. Furthermore, we also apply the method to the spatially non-homogeneous equations through a case study of the Vlasov–Poisson–Landau equation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Computational Physics
Journal of Computational Physics 物理-计算机:跨学科应用
CiteScore
7.60
自引率
14.60%
发文量
763
审稿时长
5.8 months
期刊介绍: Journal of Computational Physics thoroughly treats the computational aspects of physical problems, presenting techniques for the numerical solution of mathematical equations arising in all areas of physics. The journal seeks to emphasize methods that cross disciplinary boundaries. The Journal of Computational Physics also publishes short notes of 4 pages or less (including figures, tables, and references but excluding title pages). Letters to the Editor commenting on articles already published in this Journal will also be considered. Neither notes nor letters should have an abstract.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信