高氯酸铵燃烧中C-N-Cl相互作用的激波管和激光吸收研究

IF 6.2 2区 工程技术 Q2 ENERGY & FUELS
Shubao Song , Lin Zhang , Meishuai Zou , Jiankun Shao
{"title":"高氯酸铵燃烧中C-N-Cl相互作用的激波管和激光吸收研究","authors":"Shubao Song ,&nbsp;Lin Zhang ,&nbsp;Meishuai Zou ,&nbsp;Jiankun Shao","doi":"10.1016/j.combustflame.2025.114508","DOIUrl":null,"url":null,"abstract":"<div><div>High-temperature gas-phase interactions between chlorine- and nitrogen-bearing species relevant to ammonium-perchlorate (AP) propellant combustion were elucidated by coupling shock-tube laser-absorption measurements with a detailed kinetic model. Time-resolved HCl concentration profiles were obtained for four argon-diluted surrogates—0.3 % NH<sub>3</sub>/0.3 % CCl<sub>4</sub>, 0.5 % NH<sub>3</sub>/0.3 % CCl<sub>4</sub>, 0.2 % NH<sub>3</sub>/0.2 % CCl<sub>4</sub>/0.2 % CH<sub>4</sub>, and 0.2 % NH<sub>3</sub>/0.2 % CCl<sub>4</sub>/0.2 % H<sub>2</sub>—over 1158–1506 K at near-atmospheric pressure. A kinetic model consisting of 164 species and 1358 reactions, assembled from state-of-the-art CCl<sub>4</sub>, H–Cl–O, NH<sub>3</sub>/C<sub>0</sub>–C<sub>2</sub>, and N–Cl sub-models, reproduced the new HCl data alongside literature ignition-delay and speciation measurements with excellent accuracy. Sensitivity and rate-of-production analyses reveal a temperature-robust control structure in which HCl forms almost entirely through Cl-atom abstraction from NH<sub>3</sub>, with Cl supplied by rapid CCl<sub>4</sub> dissociation; the barrierless Cl + H&lt;=&gt;HCl path dominates in H<sub>2</sub>-containing mixtures, whereas competition from Cl + CH<sub>4</sub>&lt;=&gt;CH<sub>3</sub> + HCl moderates HCl growth and channels carbon–nitrogen flux toward toxic HCN when CH<sub>4</sub> is present. Elevated temperature chiefly amplifies Cl production and suppresses NH<sub>2</sub> recombination, accelerating overall reactivity without altering the dominant pathways. The resulting benchmark HCl time-histories and rigorously validated model advance fundamental understanding of chlorine–nitrogen combustion chemistry and provide quantitative guidance for formulating halogenated energetic materials that maximise performance while limiting hazardous by-product formation. Importantly, the mechanism developed here may serve as a transferable gas-phase sub-model for future integration into comprehensive AP combustion frameworks, enabling more predictive simulations of real propellant systems.</div></div>","PeriodicalId":280,"journal":{"name":"Combustion and Flame","volume":"282 ","pages":"Article 114508"},"PeriodicalIF":6.2000,"publicationDate":"2025-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Shock tube and laser absorption study of C–N–Cl interactions relevant to ammonium perchlorate combustion\",\"authors\":\"Shubao Song ,&nbsp;Lin Zhang ,&nbsp;Meishuai Zou ,&nbsp;Jiankun Shao\",\"doi\":\"10.1016/j.combustflame.2025.114508\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>High-temperature gas-phase interactions between chlorine- and nitrogen-bearing species relevant to ammonium-perchlorate (AP) propellant combustion were elucidated by coupling shock-tube laser-absorption measurements with a detailed kinetic model. Time-resolved HCl concentration profiles were obtained for four argon-diluted surrogates—0.3 % NH<sub>3</sub>/0.3 % CCl<sub>4</sub>, 0.5 % NH<sub>3</sub>/0.3 % CCl<sub>4</sub>, 0.2 % NH<sub>3</sub>/0.2 % CCl<sub>4</sub>/0.2 % CH<sub>4</sub>, and 0.2 % NH<sub>3</sub>/0.2 % CCl<sub>4</sub>/0.2 % H<sub>2</sub>—over 1158–1506 K at near-atmospheric pressure. A kinetic model consisting of 164 species and 1358 reactions, assembled from state-of-the-art CCl<sub>4</sub>, H–Cl–O, NH<sub>3</sub>/C<sub>0</sub>–C<sub>2</sub>, and N–Cl sub-models, reproduced the new HCl data alongside literature ignition-delay and speciation measurements with excellent accuracy. Sensitivity and rate-of-production analyses reveal a temperature-robust control structure in which HCl forms almost entirely through Cl-atom abstraction from NH<sub>3</sub>, with Cl supplied by rapid CCl<sub>4</sub> dissociation; the barrierless Cl + H&lt;=&gt;HCl path dominates in H<sub>2</sub>-containing mixtures, whereas competition from Cl + CH<sub>4</sub>&lt;=&gt;CH<sub>3</sub> + HCl moderates HCl growth and channels carbon–nitrogen flux toward toxic HCN when CH<sub>4</sub> is present. Elevated temperature chiefly amplifies Cl production and suppresses NH<sub>2</sub> recombination, accelerating overall reactivity without altering the dominant pathways. The resulting benchmark HCl time-histories and rigorously validated model advance fundamental understanding of chlorine–nitrogen combustion chemistry and provide quantitative guidance for formulating halogenated energetic materials that maximise performance while limiting hazardous by-product formation. Importantly, the mechanism developed here may serve as a transferable gas-phase sub-model for future integration into comprehensive AP combustion frameworks, enabling more predictive simulations of real propellant systems.</div></div>\",\"PeriodicalId\":280,\"journal\":{\"name\":\"Combustion and Flame\",\"volume\":\"282 \",\"pages\":\"Article 114508\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2025-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Combustion and Flame\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0010218025005450\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combustion and Flame","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010218025005450","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

通过激波管激光吸收测量和详细的动力学模型,阐明了高氯酸铵推进剂燃烧过程中含氯和含氮物质之间的高温气相相互作用。在1158 ~ 1506 K的近大气压下,得到了四种氩稀释代物——0.3% nh3 / 0.3% CCl4、0.5% nh3 / 0.3% CCl4、0.2% nh3 / 0.2% CCl4/ 0.2% CH4和0.2% nh3 / 0.2% CCl4/ 0.2% h2的时间分辨HCl浓度谱。一个由164种物质和1358种反应组成的动力学模型,由最先进的CCl4、H-Cl-O、NH3/ C0-C2和N-Cl子模型组装而成,以极好的精度再现了新的HCl数据以及文献中的点火延迟和物质形成测量。灵敏度和生产速率分析揭示了一个温度稳定的控制结构,在这个结构中,HCl几乎完全通过NH3中Cl原子的提取形成,而Cl则通过CCl4的快速解离提供;Cl + H<=>;HCl在含h2混合物中占主导地位,而Cl + CH4<;=>;CH3 + HCl的竞争减缓了HCl的生长,并在CH4存在时将碳氮通量导向有毒的HCN。升高的温度主要是放大Cl的产生和抑制NH2的重组,在不改变主要途径的情况下加速整体反应性。由此产生的基准HCl时程和经过严格验证的模型推进了对氯氮燃烧化学的基本理解,并为制定卤化高能材料提供了定量指导,这些材料可以最大限度地提高性能,同时限制有害副产品的形成。重要的是,这里开发的机制可以作为一个可转移的气相子模型,用于未来集成到综合AP燃烧框架中,从而实现对真实推进剂系统的更具预测性的模拟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Shock tube and laser absorption study of C–N–Cl interactions relevant to ammonium perchlorate combustion
High-temperature gas-phase interactions between chlorine- and nitrogen-bearing species relevant to ammonium-perchlorate (AP) propellant combustion were elucidated by coupling shock-tube laser-absorption measurements with a detailed kinetic model. Time-resolved HCl concentration profiles were obtained for four argon-diluted surrogates—0.3 % NH3/0.3 % CCl4, 0.5 % NH3/0.3 % CCl4, 0.2 % NH3/0.2 % CCl4/0.2 % CH4, and 0.2 % NH3/0.2 % CCl4/0.2 % H2—over 1158–1506 K at near-atmospheric pressure. A kinetic model consisting of 164 species and 1358 reactions, assembled from state-of-the-art CCl4, H–Cl–O, NH3/C0–C2, and N–Cl sub-models, reproduced the new HCl data alongside literature ignition-delay and speciation measurements with excellent accuracy. Sensitivity and rate-of-production analyses reveal a temperature-robust control structure in which HCl forms almost entirely through Cl-atom abstraction from NH3, with Cl supplied by rapid CCl4 dissociation; the barrierless Cl + H<=>HCl path dominates in H2-containing mixtures, whereas competition from Cl + CH4<=>CH3 + HCl moderates HCl growth and channels carbon–nitrogen flux toward toxic HCN when CH4 is present. Elevated temperature chiefly amplifies Cl production and suppresses NH2 recombination, accelerating overall reactivity without altering the dominant pathways. The resulting benchmark HCl time-histories and rigorously validated model advance fundamental understanding of chlorine–nitrogen combustion chemistry and provide quantitative guidance for formulating halogenated energetic materials that maximise performance while limiting hazardous by-product formation. Importantly, the mechanism developed here may serve as a transferable gas-phase sub-model for future integration into comprehensive AP combustion frameworks, enabling more predictive simulations of real propellant systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Combustion and Flame
Combustion and Flame 工程技术-工程:化工
CiteScore
9.50
自引率
20.50%
发文量
631
审稿时长
3.8 months
期刊介绍: The mission of the journal is to publish high quality work from experimental, theoretical, and computational investigations on the fundamentals of combustion phenomena and closely allied matters. While submissions in all pertinent areas are welcomed, past and recent focus of the journal has been on: Development and validation of reaction kinetics, reduction of reaction mechanisms and modeling of combustion systems, including: Conventional, alternative and surrogate fuels; Pollutants; Particulate and aerosol formation and abatement; Heterogeneous processes. Experimental, theoretical, and computational studies of laminar and turbulent combustion phenomena, including: Premixed and non-premixed flames; Ignition and extinction phenomena; Flame propagation; Flame structure; Instabilities and swirl; Flame spread; Multi-phase reactants. Advances in diagnostic and computational methods in combustion, including: Measurement and simulation of scalar and vector properties; Novel techniques; State-of-the art applications. Fundamental investigations of combustion technologies and systems, including: Internal combustion engines; Gas turbines; Small- and large-scale stationary combustion and power generation; Catalytic combustion; Combustion synthesis; Combustion under extreme conditions; New concepts.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信