集成随机异常信息的网联自动驾驶环境下晶格流体力学模型的相变

IF 5.6 1区 数学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Guanghan Peng , Yuangui Liu , Huili Tan , Dongxue Xia , Tong Zhou
{"title":"集成随机异常信息的网联自动驾驶环境下晶格流体力学模型的相变","authors":"Guanghan Peng ,&nbsp;Yuangui Liu ,&nbsp;Huili Tan ,&nbsp;Dongxue Xia ,&nbsp;Tong Zhou","doi":"10.1016/j.chaos.2025.117274","DOIUrl":null,"url":null,"abstract":"<div><div>As vehicle-to-everything (V2X) communication technology rapidly evolves, connected autonomous vehicles (CAVs) have emerged as a significant component of traffic flow. However, anomalies in the information within the V2X environment can greatly impact the stability of traffic flow composed of CAVs. In this context, we have innovatively constructed a lattice hydrodynamic model by incorporating random anomalous information parameters. This model examines the effect of random anomalous information on the queue of CAVs within the V2X environment, capturing the interference of such information on traffic flow. Furthermore, we conduct linear stability analysis and nonlinear analysis for the new model, successfully deriving the neutral stability conditions and the modified Korteweg-de Vries (mKdV) equation. Additionally, through simulations, we explore the impact of random anomalous information on CAVs from the perspectives of density variation and density differences (limit cycle). Power spectrum and spectral entropy are also applied to investigate traffic stability and complexity under the interference of random anomalous information in the vicinity of CAVs. The simulation results indicate that an increase in the probability of information anomalies significantly degrades the stability of traffic flow, while variations in different anomalous information intensity coefficients produce heterogeneous disturbances in traffic flow dynamics.</div></div>","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":"201 ","pages":"Article 117274"},"PeriodicalIF":5.6000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Phase transition in lattice hydrodynamic model integrating random anomalous information under connected autonomous vehicles surroundings\",\"authors\":\"Guanghan Peng ,&nbsp;Yuangui Liu ,&nbsp;Huili Tan ,&nbsp;Dongxue Xia ,&nbsp;Tong Zhou\",\"doi\":\"10.1016/j.chaos.2025.117274\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>As vehicle-to-everything (V2X) communication technology rapidly evolves, connected autonomous vehicles (CAVs) have emerged as a significant component of traffic flow. However, anomalies in the information within the V2X environment can greatly impact the stability of traffic flow composed of CAVs. In this context, we have innovatively constructed a lattice hydrodynamic model by incorporating random anomalous information parameters. This model examines the effect of random anomalous information on the queue of CAVs within the V2X environment, capturing the interference of such information on traffic flow. Furthermore, we conduct linear stability analysis and nonlinear analysis for the new model, successfully deriving the neutral stability conditions and the modified Korteweg-de Vries (mKdV) equation. Additionally, through simulations, we explore the impact of random anomalous information on CAVs from the perspectives of density variation and density differences (limit cycle). Power spectrum and spectral entropy are also applied to investigate traffic stability and complexity under the interference of random anomalous information in the vicinity of CAVs. The simulation results indicate that an increase in the probability of information anomalies significantly degrades the stability of traffic flow, while variations in different anomalous information intensity coefficients produce heterogeneous disturbances in traffic flow dynamics.</div></div>\",\"PeriodicalId\":9764,\"journal\":{\"name\":\"Chaos Solitons & Fractals\",\"volume\":\"201 \",\"pages\":\"Article 117274\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2025-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chaos Solitons & Fractals\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0960077925012871\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos Solitons & Fractals","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960077925012871","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

随着车联网(V2X)通信技术的迅速发展,联网自动驾驶汽车(cav)已经成为交通流量的重要组成部分。然而,V2X环境中信息的异常会极大地影响由自动驾驶汽车组成的交通流的稳定性。在此背景下,我们创新性地通过纳入随机异常信息参数构建了晶格流体力学模型。该模型考察了V2X环境中随机异常信息对自动驾驶汽车队列的影响,捕捉了此类信息对交通流的干扰。此外,我们对新模型进行了线性稳定性分析和非线性分析,成功地推导出中性稳定性条件和修正的Korteweg-de Vries (mKdV)方程。此外,通过模拟,我们从密度变化和密度差(极限环)的角度探讨了随机异常信息对cav的影响。利用功率谱和谱熵分析了车辆附近随机异常信息干扰下的交通稳定性和复杂性。仿真结果表明,信息异常概率的增加会显著降低交通流的稳定性,而不同异常信息强度系数的变化会对交通流动力学产生异质干扰。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Phase transition in lattice hydrodynamic model integrating random anomalous information under connected autonomous vehicles surroundings
As vehicle-to-everything (V2X) communication technology rapidly evolves, connected autonomous vehicles (CAVs) have emerged as a significant component of traffic flow. However, anomalies in the information within the V2X environment can greatly impact the stability of traffic flow composed of CAVs. In this context, we have innovatively constructed a lattice hydrodynamic model by incorporating random anomalous information parameters. This model examines the effect of random anomalous information on the queue of CAVs within the V2X environment, capturing the interference of such information on traffic flow. Furthermore, we conduct linear stability analysis and nonlinear analysis for the new model, successfully deriving the neutral stability conditions and the modified Korteweg-de Vries (mKdV) equation. Additionally, through simulations, we explore the impact of random anomalous information on CAVs from the perspectives of density variation and density differences (limit cycle). Power spectrum and spectral entropy are also applied to investigate traffic stability and complexity under the interference of random anomalous information in the vicinity of CAVs. The simulation results indicate that an increase in the probability of information anomalies significantly degrades the stability of traffic flow, while variations in different anomalous information intensity coefficients produce heterogeneous disturbances in traffic flow dynamics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chaos Solitons & Fractals
Chaos Solitons & Fractals 物理-数学跨学科应用
CiteScore
13.20
自引率
10.30%
发文量
1087
审稿时长
9 months
期刊介绍: Chaos, Solitons & Fractals strives to establish itself as a premier journal in the interdisciplinary realm of Nonlinear Science, Non-equilibrium, and Complex Phenomena. It welcomes submissions covering a broad spectrum of topics within this field, including dynamics, non-equilibrium processes in physics, chemistry, and geophysics, complex matter and networks, mathematical models, computational biology, applications to quantum and mesoscopic phenomena, fluctuations and random processes, self-organization, and social phenomena.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信