层次组织Axelrod模型的熵分析

IF 5.6 1区 数学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Marcos E. Gaudiano , Jorge A. Revelli
{"title":"层次组织Axelrod模型的熵分析","authors":"Marcos E. Gaudiano ,&nbsp;Jorge A. Revelli","doi":"10.1016/j.chaos.2025.117287","DOIUrl":null,"url":null,"abstract":"<div><div>Hierarchically organized patterns are ubiquitously found in complex systems, however most Sociophysics models still assume random initial conditions. In this article, we study a simple and quasi-non-parametric version of Axelrod’s model of cultural dynamics, where individuals are initially arranged following structured spatial and ideological patterns. We explore how different levels of initial structural complexity influence the system’s evolution, identifying distinct regimes of controllability and cultural diversity, which can be interpreted through an entropy-based perspective. We show that maximum cultural diversification occurs within a specific range of initial structural organization, corresponding to a regime of high entropy and unpredictability. Moreover, we observe a quantization phenomenon, where only certain discrete types of final cultural configurations emerge.</div></div>","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":"201 ","pages":"Article 117287"},"PeriodicalIF":5.6000,"publicationDate":"2025-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Entropic analysis of a hierarchically organized Axelrod model\",\"authors\":\"Marcos E. Gaudiano ,&nbsp;Jorge A. Revelli\",\"doi\":\"10.1016/j.chaos.2025.117287\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Hierarchically organized patterns are ubiquitously found in complex systems, however most Sociophysics models still assume random initial conditions. In this article, we study a simple and quasi-non-parametric version of Axelrod’s model of cultural dynamics, where individuals are initially arranged following structured spatial and ideological patterns. We explore how different levels of initial structural complexity influence the system’s evolution, identifying distinct regimes of controllability and cultural diversity, which can be interpreted through an entropy-based perspective. We show that maximum cultural diversification occurs within a specific range of initial structural organization, corresponding to a regime of high entropy and unpredictability. Moreover, we observe a quantization phenomenon, where only certain discrete types of final cultural configurations emerge.</div></div>\",\"PeriodicalId\":9764,\"journal\":{\"name\":\"Chaos Solitons & Fractals\",\"volume\":\"201 \",\"pages\":\"Article 117287\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2025-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chaos Solitons & Fractals\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0960077925013001\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos Solitons & Fractals","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960077925013001","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

层次组织模式在复杂系统中无处不在,然而大多数社会物理学模型仍然假设随机初始条件。在本文中,我们研究了阿克塞尔罗德文化动力学模型的一个简单的准非参数版本,其中个人最初按照结构化的空间和意识形态模式进行安排。我们探讨了不同水平的初始结构复杂性如何影响系统的演化,确定了不同的可控性和文化多样性制度,这可以通过基于熵的视角来解释。我们表明,最大的文化多样化发生在初始结构组织的特定范围内,对应于高熵和不可预测性的制度。此外,我们观察到一种量化现象,其中只有某些离散类型的最终文化配置出现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Entropic analysis of a hierarchically organized Axelrod model
Hierarchically organized patterns are ubiquitously found in complex systems, however most Sociophysics models still assume random initial conditions. In this article, we study a simple and quasi-non-parametric version of Axelrod’s model of cultural dynamics, where individuals are initially arranged following structured spatial and ideological patterns. We explore how different levels of initial structural complexity influence the system’s evolution, identifying distinct regimes of controllability and cultural diversity, which can be interpreted through an entropy-based perspective. We show that maximum cultural diversification occurs within a specific range of initial structural organization, corresponding to a regime of high entropy and unpredictability. Moreover, we observe a quantization phenomenon, where only certain discrete types of final cultural configurations emerge.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chaos Solitons & Fractals
Chaos Solitons & Fractals 物理-数学跨学科应用
CiteScore
13.20
自引率
10.30%
发文量
1087
审稿时长
9 months
期刊介绍: Chaos, Solitons & Fractals strives to establish itself as a premier journal in the interdisciplinary realm of Nonlinear Science, Non-equilibrium, and Complex Phenomena. It welcomes submissions covering a broad spectrum of topics within this field, including dynamics, non-equilibrium processes in physics, chemistry, and geophysics, complex matter and networks, mathematical models, computational biology, applications to quantum and mesoscopic phenomena, fluctuations and random processes, self-organization, and social phenomena.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信