基于机器学习的金融时间序列预测新离散分数AMAR模型

IF 5.6 1区 数学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Xin-Yi Xu, Guo-Cheng Wu, Derong Xie
{"title":"基于机器学习的金融时间序列预测新离散分数AMAR模型","authors":"Xin-Yi Xu,&nbsp;Guo-Cheng Wu,&nbsp;Derong Xie","doi":"10.1016/j.chaos.2025.117296","DOIUrl":null,"url":null,"abstract":"<div><div>This study analyzes and addresses the modeling problem of short-term dependent time series. Firstly, discrete fractional calculus is proposed to enhance the performance of the classical model. A fractional Autoregressive Moving Average model is proposed. Then, the neural network is adopted to construct an optimization problem. The automatic model selection algorithm is used to find an optimal solution, along with optimal neural network architectures. Furthermore, the neural network is trained, and the parameter estimation of the proposed model for stock price forecasting is obtained. Through the robust testing, model verification, and comparison with traditional models, the experimental results demonstrate the new model’s efficiency and reliability.</div></div>","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":"201 ","pages":"Article 117296"},"PeriodicalIF":5.6000,"publicationDate":"2025-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A new discrete fractional AMAR model for finance time series forecasting by machine learning\",\"authors\":\"Xin-Yi Xu,&nbsp;Guo-Cheng Wu,&nbsp;Derong Xie\",\"doi\":\"10.1016/j.chaos.2025.117296\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study analyzes and addresses the modeling problem of short-term dependent time series. Firstly, discrete fractional calculus is proposed to enhance the performance of the classical model. A fractional Autoregressive Moving Average model is proposed. Then, the neural network is adopted to construct an optimization problem. The automatic model selection algorithm is used to find an optimal solution, along with optimal neural network architectures. Furthermore, the neural network is trained, and the parameter estimation of the proposed model for stock price forecasting is obtained. Through the robust testing, model verification, and comparison with traditional models, the experimental results demonstrate the new model’s efficiency and reliability.</div></div>\",\"PeriodicalId\":9764,\"journal\":{\"name\":\"Chaos Solitons & Fractals\",\"volume\":\"201 \",\"pages\":\"Article 117296\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2025-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chaos Solitons & Fractals\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0960077925013098\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos Solitons & Fractals","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960077925013098","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

本文分析并解决了短期依赖时间序列的建模问题。首先,提出了离散分数阶演算方法来提高经典模型的性能。提出了一种分数阶自回归移动平均模型。然后,采用神经网络构造优化问题。自动模型选择算法用于寻找最优解,以及最优神经网络结构。在此基础上,对神经网络进行训练,得到了该模型的参数估计。通过鲁棒性测试、模型验证以及与传统模型的对比,实验结果证明了新模型的有效性和可靠性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A new discrete fractional AMAR model for finance time series forecasting by machine learning
This study analyzes and addresses the modeling problem of short-term dependent time series. Firstly, discrete fractional calculus is proposed to enhance the performance of the classical model. A fractional Autoregressive Moving Average model is proposed. Then, the neural network is adopted to construct an optimization problem. The automatic model selection algorithm is used to find an optimal solution, along with optimal neural network architectures. Furthermore, the neural network is trained, and the parameter estimation of the proposed model for stock price forecasting is obtained. Through the robust testing, model verification, and comparison with traditional models, the experimental results demonstrate the new model’s efficiency and reliability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chaos Solitons & Fractals
Chaos Solitons & Fractals 物理-数学跨学科应用
CiteScore
13.20
自引率
10.30%
发文量
1087
审稿时长
9 months
期刊介绍: Chaos, Solitons & Fractals strives to establish itself as a premier journal in the interdisciplinary realm of Nonlinear Science, Non-equilibrium, and Complex Phenomena. It welcomes submissions covering a broad spectrum of topics within this field, including dynamics, non-equilibrium processes in physics, chemistry, and geophysics, complex matter and networks, mathematical models, computational biology, applications to quantum and mesoscopic phenomena, fluctuations and random processes, self-organization, and social phenomena.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信