FitzHugh-Nagumo模型的空间定位

IF 5.6 1区 数学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Pedro Parra-Rivas , Fahad Al Saadi , Lendert Gelens
{"title":"FitzHugh-Nagumo模型的空间定位","authors":"Pedro Parra-Rivas ,&nbsp;Fahad Al Saadi ,&nbsp;Lendert Gelens","doi":"10.1016/j.chaos.2025.117247","DOIUrl":null,"url":null,"abstract":"<div><div>The FitzHugh–Nagumo model, originally introduced to study neural dynamics, has since found applications across diverse fields, including cardiology and biology. However, the formation and bifurcation structure of spatially localized states in this model remain underexplored. In this work, we present a detailed bifurcation analysis of such localized structures in one spatial dimension in the FitzHugh–Nagumo model. We demonstrate that these localized states undergo a smooth transition between standard and collapsed homoclinic snaking as the system shifts from pattern–uniform to uniform–uniform bistability. Additionally, we explore the oscillatory dynamics exhibited by these states when varying the time-scale separation and diffusion coefficient. Our study leverages a combination of analytical and numerical techniques to uncover the stability and dynamic regimes of spatially localized structures, offering new insights into the mechanisms governing spatial localization in this widely used model system.</div></div>","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":"201 ","pages":"Article 117247"},"PeriodicalIF":5.6000,"publicationDate":"2025-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spatial localization in the FitzHugh–Nagumo model\",\"authors\":\"Pedro Parra-Rivas ,&nbsp;Fahad Al Saadi ,&nbsp;Lendert Gelens\",\"doi\":\"10.1016/j.chaos.2025.117247\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The FitzHugh–Nagumo model, originally introduced to study neural dynamics, has since found applications across diverse fields, including cardiology and biology. However, the formation and bifurcation structure of spatially localized states in this model remain underexplored. In this work, we present a detailed bifurcation analysis of such localized structures in one spatial dimension in the FitzHugh–Nagumo model. We demonstrate that these localized states undergo a smooth transition between standard and collapsed homoclinic snaking as the system shifts from pattern–uniform to uniform–uniform bistability. Additionally, we explore the oscillatory dynamics exhibited by these states when varying the time-scale separation and diffusion coefficient. Our study leverages a combination of analytical and numerical techniques to uncover the stability and dynamic regimes of spatially localized structures, offering new insights into the mechanisms governing spatial localization in this widely used model system.</div></div>\",\"PeriodicalId\":9764,\"journal\":{\"name\":\"Chaos Solitons & Fractals\",\"volume\":\"201 \",\"pages\":\"Article 117247\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2025-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chaos Solitons & Fractals\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0960077925012603\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos Solitons & Fractals","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960077925012603","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

FitzHugh-Nagumo模型最初用于研究神经动力学,后来在包括心脏病学和生物学在内的多个领域得到了应用。然而,该模型中空间局域态的形成和分岔结构仍未得到充分的研究。在这项工作中,我们在FitzHugh-Nagumo模型中对这种局部结构在一个空间维度上进行了详细的分岔分析。我们证明了当系统从模式均匀到均匀-均匀双稳定转变时,这些局域状态经历了标准和坍缩同斜蛇形之间的平滑过渡。此外,我们还探讨了这些状态在改变时间尺度分离系数和扩散系数时所表现出的振荡动力学。我们的研究利用分析和数值技术的结合来揭示空间局部化结构的稳定性和动态机制,为这种广泛使用的模型系统的空间局部化机制提供新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spatial localization in the FitzHugh–Nagumo model
The FitzHugh–Nagumo model, originally introduced to study neural dynamics, has since found applications across diverse fields, including cardiology and biology. However, the formation and bifurcation structure of spatially localized states in this model remain underexplored. In this work, we present a detailed bifurcation analysis of such localized structures in one spatial dimension in the FitzHugh–Nagumo model. We demonstrate that these localized states undergo a smooth transition between standard and collapsed homoclinic snaking as the system shifts from pattern–uniform to uniform–uniform bistability. Additionally, we explore the oscillatory dynamics exhibited by these states when varying the time-scale separation and diffusion coefficient. Our study leverages a combination of analytical and numerical techniques to uncover the stability and dynamic regimes of spatially localized structures, offering new insights into the mechanisms governing spatial localization in this widely used model system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chaos Solitons & Fractals
Chaos Solitons & Fractals 物理-数学跨学科应用
CiteScore
13.20
自引率
10.30%
发文量
1087
审稿时长
9 months
期刊介绍: Chaos, Solitons & Fractals strives to establish itself as a premier journal in the interdisciplinary realm of Nonlinear Science, Non-equilibrium, and Complex Phenomena. It welcomes submissions covering a broad spectrum of topics within this field, including dynamics, non-equilibrium processes in physics, chemistry, and geophysics, complex matter and networks, mathematical models, computational biology, applications to quantum and mesoscopic phenomena, fluctuations and random processes, self-organization, and social phenomena.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信