恐惧驱动的群居性和生存:在一个多面手的捕食者-猎物系统中建模双向反馈和季节性

IF 5.6 1区 数学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Yalong Xue , Shengjiang Chen , Lili Xu , Fengde Chen
{"title":"恐惧驱动的群居性和生存:在一个多面手的捕食者-猎物系统中建模双向反馈和季节性","authors":"Yalong Xue ,&nbsp;Shengjiang Chen ,&nbsp;Lili Xu ,&nbsp;Fengde Chen","doi":"10.1016/j.chaos.2025.117316","DOIUrl":null,"url":null,"abstract":"<div><div>Prey fear and gregarious behavior form a bidirectional feedback loop critical to ecosystem stability. We quantify this bidirectional feedback by using GSE mechanisms and extending this framework to seasonal environments. Mathematical analysis and numerical simulations validate the proposed model. Research shows that increasing fear intensity eliminates positive equilibria via saddle–node bifurcation, while GSE mitigates this by enhancing group survival. Under bistability, the number, spatial distribution, and stability of interior equilibria exhibit selective dependence on both fear parameter and GSE. Fear and GSE form a feedback loop that can stabilize ecosystems or trigger extinction via bistability. Notably, fear effects and GSE exert opposing influences on model dynamics. Furthermore, it is highlighted that seasonal variations modulate but do not fundamentally alter the underlying stability structure dictated by fear and group size effect. Seasonal forcing amplifies these dynamics, with prey initial density being critical to persistence. This study establishes the first theoretical framework unifying GSE-driven fear feedbacks and seasonal forcing, offering mechanistic insights into ecosystem resilience and extinction thresholds.</div></div>","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":"201 ","pages":"Article 117316"},"PeriodicalIF":5.6000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fear-driven gregariousness and survival: Modeling bidirectional feedbacks and seasonality in a generalist predator–prey system\",\"authors\":\"Yalong Xue ,&nbsp;Shengjiang Chen ,&nbsp;Lili Xu ,&nbsp;Fengde Chen\",\"doi\":\"10.1016/j.chaos.2025.117316\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Prey fear and gregarious behavior form a bidirectional feedback loop critical to ecosystem stability. We quantify this bidirectional feedback by using GSE mechanisms and extending this framework to seasonal environments. Mathematical analysis and numerical simulations validate the proposed model. Research shows that increasing fear intensity eliminates positive equilibria via saddle–node bifurcation, while GSE mitigates this by enhancing group survival. Under bistability, the number, spatial distribution, and stability of interior equilibria exhibit selective dependence on both fear parameter and GSE. Fear and GSE form a feedback loop that can stabilize ecosystems or trigger extinction via bistability. Notably, fear effects and GSE exert opposing influences on model dynamics. Furthermore, it is highlighted that seasonal variations modulate but do not fundamentally alter the underlying stability structure dictated by fear and group size effect. Seasonal forcing amplifies these dynamics, with prey initial density being critical to persistence. This study establishes the first theoretical framework unifying GSE-driven fear feedbacks and seasonal forcing, offering mechanistic insights into ecosystem resilience and extinction thresholds.</div></div>\",\"PeriodicalId\":9764,\"journal\":{\"name\":\"Chaos Solitons & Fractals\",\"volume\":\"201 \",\"pages\":\"Article 117316\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2025-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chaos Solitons & Fractals\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0960077925013293\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos Solitons & Fractals","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960077925013293","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

对猎物的恐惧和群居行为形成了对生态系统稳定至关重要的双向反馈循环。我们通过使用GSE机制并将该框架扩展到季节性环境来量化这种双向反馈。数学分析和数值仿真验证了该模型的有效性。研究表明,恐惧强度的增加通过鞍节点分叉消除了正平衡,而GSE通过提高群体存活率来减轻这种平衡。在双稳态条件下,内部均衡的数量、空间分布和稳定性对恐惧参数和GSE均有选择性依赖。恐惧和GSE形成了一个反馈循环,可以稳定生态系统或通过双稳定性引发灭绝。值得注意的是,恐惧效应和GSE对模型动力学的影响是相反的。此外,研究还强调,季节变化会调节但不会从根本上改变由恐惧和群体规模效应决定的潜在稳定性结构。季节强迫放大了这些动态,猎物的初始密度对持久性至关重要。本研究建立了第一个统一gse驱动的恐惧反馈和季节强迫的理论框架,为生态系统恢复力和灭绝阈值提供了机制见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fear-driven gregariousness and survival: Modeling bidirectional feedbacks and seasonality in a generalist predator–prey system
Prey fear and gregarious behavior form a bidirectional feedback loop critical to ecosystem stability. We quantify this bidirectional feedback by using GSE mechanisms and extending this framework to seasonal environments. Mathematical analysis and numerical simulations validate the proposed model. Research shows that increasing fear intensity eliminates positive equilibria via saddle–node bifurcation, while GSE mitigates this by enhancing group survival. Under bistability, the number, spatial distribution, and stability of interior equilibria exhibit selective dependence on both fear parameter and GSE. Fear and GSE form a feedback loop that can stabilize ecosystems or trigger extinction via bistability. Notably, fear effects and GSE exert opposing influences on model dynamics. Furthermore, it is highlighted that seasonal variations modulate but do not fundamentally alter the underlying stability structure dictated by fear and group size effect. Seasonal forcing amplifies these dynamics, with prey initial density being critical to persistence. This study establishes the first theoretical framework unifying GSE-driven fear feedbacks and seasonal forcing, offering mechanistic insights into ecosystem resilience and extinction thresholds.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chaos Solitons & Fractals
Chaos Solitons & Fractals 物理-数学跨学科应用
CiteScore
13.20
自引率
10.30%
发文量
1087
审稿时长
9 months
期刊介绍: Chaos, Solitons & Fractals strives to establish itself as a premier journal in the interdisciplinary realm of Nonlinear Science, Non-equilibrium, and Complex Phenomena. It welcomes submissions covering a broad spectrum of topics within this field, including dynamics, non-equilibrium processes in physics, chemistry, and geophysics, complex matter and networks, mathematical models, computational biology, applications to quantum and mesoscopic phenomena, fluctuations and random processes, self-organization, and social phenomena.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信