cvd生长MoS2/DWCNT异质结构锁模光纤激光器饱和吸收材料的制备

IF 5.6 1区 数学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Bin Zhang , Zhenyu Xu , Zixuan Ning , Xueyin Bai , Jiancheng Zheng , Qiang Zhang , Shuyi Mi , Weimin Sun , Esko I. Kauppinen , Li Li
{"title":"cvd生长MoS2/DWCNT异质结构锁模光纤激光器饱和吸收材料的制备","authors":"Bin Zhang ,&nbsp;Zhenyu Xu ,&nbsp;Zixuan Ning ,&nbsp;Xueyin Bai ,&nbsp;Jiancheng Zheng ,&nbsp;Qiang Zhang ,&nbsp;Shuyi Mi ,&nbsp;Weimin Sun ,&nbsp;Esko I. Kauppinen ,&nbsp;Li Li","doi":"10.1016/j.chaos.2025.117354","DOIUrl":null,"url":null,"abstract":"<div><div>Nanomaterial heterostructures play an important role as saturable absorbers (SAs) for achieving mode-locking in ultrafast fiber lasers. However, current heterostructure fabrication methods for sandwich-structured SAs in all-fiber laser applications still face several technical challenges: mechanical exfoliation exhibits limitations in thickness controllability and preparation scale, liquid-phase exfoliation suffers from polymer residues and poor material homogeneity, while conventional chemical vapor deposition (CVD) methods, although free from these limitations during material preparation, typically require wet-transfer processes from growth substrates (e.g., silicon or sapphire) to fiber end-faces that often induce material wrinkling and contamination. To enable direct dry-transfer onto fiber end-faces, this study proposes a novel approach that combines floating-catalyst CVD (FC-CVD) and gas-phase CVD (GCVD) to synthesize substrate-free, mixed-dimensional MoS<sub>2</sub>/DWCNT heterostructures. With a fixed MoS<sub>2</sub> thickness of 52 nm, two heterostructures were fabricated by changing DWCNT collection time: an 88-nm-thick (36-nm-thick DWCNT) SA with modulation depth of 1.0 %, saturation intensity of 43.9 MW/cm<sup>2</sup>, and nonsaturable loss of 74.0 %; and a 70-nm-thick (18-nm-thick DWCNT) SA exhibiting modulation depth of 1.4 %, saturation intensity of 50.0 MW/cm<sup>2</sup>, and nonsaturable loss of 69.4 %. Both heterostructures functioned effectively as SAs in erbium-doped fiber lasers (EDFLs), generating stable conventional soliton mode-locking with pulse widths of 1.26 ps (88-nm-thick SA) and 0.78 ps (70-nm-thick SA). The experimental results demonstrate that lower nonsaturable loss not only compresses the pulse width but also reduces the soliton generation time, consistent with theoretical simulation results from the complex nonlinear Ginzburg-Landau equation. We demonstrate that the two-step CVD method for synthesizing thickness-controlled heterostructure SAs provides a simple method for tuning mode-locked pulse widths.</div></div>","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":"201 ","pages":"Article 117354"},"PeriodicalIF":5.6000,"publicationDate":"2025-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fabrication of a CVD-grown MoS2/DWCNT heterostructure as a saturable absorber for a mode-locked fiber laser\",\"authors\":\"Bin Zhang ,&nbsp;Zhenyu Xu ,&nbsp;Zixuan Ning ,&nbsp;Xueyin Bai ,&nbsp;Jiancheng Zheng ,&nbsp;Qiang Zhang ,&nbsp;Shuyi Mi ,&nbsp;Weimin Sun ,&nbsp;Esko I. Kauppinen ,&nbsp;Li Li\",\"doi\":\"10.1016/j.chaos.2025.117354\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Nanomaterial heterostructures play an important role as saturable absorbers (SAs) for achieving mode-locking in ultrafast fiber lasers. However, current heterostructure fabrication methods for sandwich-structured SAs in all-fiber laser applications still face several technical challenges: mechanical exfoliation exhibits limitations in thickness controllability and preparation scale, liquid-phase exfoliation suffers from polymer residues and poor material homogeneity, while conventional chemical vapor deposition (CVD) methods, although free from these limitations during material preparation, typically require wet-transfer processes from growth substrates (e.g., silicon or sapphire) to fiber end-faces that often induce material wrinkling and contamination. To enable direct dry-transfer onto fiber end-faces, this study proposes a novel approach that combines floating-catalyst CVD (FC-CVD) and gas-phase CVD (GCVD) to synthesize substrate-free, mixed-dimensional MoS<sub>2</sub>/DWCNT heterostructures. With a fixed MoS<sub>2</sub> thickness of 52 nm, two heterostructures were fabricated by changing DWCNT collection time: an 88-nm-thick (36-nm-thick DWCNT) SA with modulation depth of 1.0 %, saturation intensity of 43.9 MW/cm<sup>2</sup>, and nonsaturable loss of 74.0 %; and a 70-nm-thick (18-nm-thick DWCNT) SA exhibiting modulation depth of 1.4 %, saturation intensity of 50.0 MW/cm<sup>2</sup>, and nonsaturable loss of 69.4 %. Both heterostructures functioned effectively as SAs in erbium-doped fiber lasers (EDFLs), generating stable conventional soliton mode-locking with pulse widths of 1.26 ps (88-nm-thick SA) and 0.78 ps (70-nm-thick SA). The experimental results demonstrate that lower nonsaturable loss not only compresses the pulse width but also reduces the soliton generation time, consistent with theoretical simulation results from the complex nonlinear Ginzburg-Landau equation. We demonstrate that the two-step CVD method for synthesizing thickness-controlled heterostructure SAs provides a simple method for tuning mode-locked pulse widths.</div></div>\",\"PeriodicalId\":9764,\"journal\":{\"name\":\"Chaos Solitons & Fractals\",\"volume\":\"201 \",\"pages\":\"Article 117354\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2025-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chaos Solitons & Fractals\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0960077925013670\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos Solitons & Fractals","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960077925013670","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

纳米异质结构是实现超快光纤激光器锁模的重要材料。然而,目前用于全光纤激光器的三明治结构SAs异质结构制造方法仍然面临着一些技术挑战:机械剥离在厚度可控性和制备规模方面存在局限性,液相剥离受聚合物残留和材料均匀性差的影响,而传统的化学气相沉积(CVD)方法虽然在材料制备过程中没有这些限制,但通常需要从生长基质(例如硅或蓝宝石)到纤维端面的湿转移过程,这通常会导致材料起皱和污染。为了实现光纤端面上的直接干转移,本研究提出了一种结合漂浮催化剂CVD (FC-CVD)和气相CVD (GCVD)的新方法来合成无衬底的混合维MoS2/DWCNT异质结构。在MoS2厚度固定为52 nm的条件下,通过改变DWCNT收集时间制备了两种异质结构:调制深度为1.0%、饱和强度为43.9 MW/cm2、不饱和损耗为74.0%的88-nm (36-nm) DWCNT SA;70-nm (18-nm)厚DWCNT SA的调制深度为1.4%,饱和强度为50.0 MW/cm2,不饱和损耗为69.4%。这两种异质结构在掺铒光纤激光器(EDFLs)中有效地发挥了SA的作用,产生了稳定的常规孤子锁模,脉冲宽度分别为1.26 ps (88-nm厚SA)和0.78 ps (70-nm厚SA)。实验结果表明,较低的非饱和损耗不仅压缩了脉冲宽度,而且缩短了孤子产生时间,这与复杂非线性金兹堡-朗道方程的理论模拟结果一致。我们证明了两步CVD法合成厚度控制异质结构SAs提供了一种简单的方法来调整锁模脉冲宽度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fabrication of a CVD-grown MoS2/DWCNT heterostructure as a saturable absorber for a mode-locked fiber laser
Nanomaterial heterostructures play an important role as saturable absorbers (SAs) for achieving mode-locking in ultrafast fiber lasers. However, current heterostructure fabrication methods for sandwich-structured SAs in all-fiber laser applications still face several technical challenges: mechanical exfoliation exhibits limitations in thickness controllability and preparation scale, liquid-phase exfoliation suffers from polymer residues and poor material homogeneity, while conventional chemical vapor deposition (CVD) methods, although free from these limitations during material preparation, typically require wet-transfer processes from growth substrates (e.g., silicon or sapphire) to fiber end-faces that often induce material wrinkling and contamination. To enable direct dry-transfer onto fiber end-faces, this study proposes a novel approach that combines floating-catalyst CVD (FC-CVD) and gas-phase CVD (GCVD) to synthesize substrate-free, mixed-dimensional MoS2/DWCNT heterostructures. With a fixed MoS2 thickness of 52 nm, two heterostructures were fabricated by changing DWCNT collection time: an 88-nm-thick (36-nm-thick DWCNT) SA with modulation depth of 1.0 %, saturation intensity of 43.9 MW/cm2, and nonsaturable loss of 74.0 %; and a 70-nm-thick (18-nm-thick DWCNT) SA exhibiting modulation depth of 1.4 %, saturation intensity of 50.0 MW/cm2, and nonsaturable loss of 69.4 %. Both heterostructures functioned effectively as SAs in erbium-doped fiber lasers (EDFLs), generating stable conventional soliton mode-locking with pulse widths of 1.26 ps (88-nm-thick SA) and 0.78 ps (70-nm-thick SA). The experimental results demonstrate that lower nonsaturable loss not only compresses the pulse width but also reduces the soliton generation time, consistent with theoretical simulation results from the complex nonlinear Ginzburg-Landau equation. We demonstrate that the two-step CVD method for synthesizing thickness-controlled heterostructure SAs provides a simple method for tuning mode-locked pulse widths.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chaos Solitons & Fractals
Chaos Solitons & Fractals 物理-数学跨学科应用
CiteScore
13.20
自引率
10.30%
发文量
1087
审稿时长
9 months
期刊介绍: Chaos, Solitons & Fractals strives to establish itself as a premier journal in the interdisciplinary realm of Nonlinear Science, Non-equilibrium, and Complex Phenomena. It welcomes submissions covering a broad spectrum of topics within this field, including dynamics, non-equilibrium processes in physics, chemistry, and geophysics, complex matter and networks, mathematical models, computational biology, applications to quantum and mesoscopic phenomena, fluctuations and random processes, self-organization, and social phenomena.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信