Agathe Hubau , Agnieszka Dybowska , Paul F. Schofield , Diego Gianolio , Ana Santos , Richard J. Herrington , Douglas Pino-Herrera , Hafida Tris , Marion Erard , Anne-Gwénaëlle Guezennec
{"title":"新喀里多尼亚褐铁矿的特征、浓度和酸性还原浸出","authors":"Agathe Hubau , Agnieszka Dybowska , Paul F. Schofield , Diego Gianolio , Ana Santos , Richard J. Herrington , Douglas Pino-Herrera , Hafida Tris , Marion Erard , Anne-Gwénaëlle Guezennec","doi":"10.1016/j.apgeochem.2025.106569","DOIUrl":null,"url":null,"abstract":"<div><div>This study aimed at determining Ni and Co leaching kinetics from a New Caledonian laterite in an acidic medium (H<sub>2</sub>SO<sub>4</sub> pH 1.5) and in a reductive environment (addition of SO<sub>3</sub><sup>2−</sup> or Fe(II)) at 46 °C. The mineralogical study revealed that Co was mainly carried by Mn oxyhydroxides in the limonite sample. Conversely, Ni was hosted by both Fe and Mn oxyhydroxides. In the presence of a reductive reagent, Mn oxyhydroxides dissolved rapidly compared to goethite, the main Fe oxyhydroxide in the sample. Co, Mn and Ni reductive leaching yields reached 79 %, 83 % and 9 % respectively after 2 days. Based on these results, a Mn oxides concentrate was produced in order to efficiently leach Co while limiting Fe oxyhydroxide dissolution. This concentrate resulted from a combination of particle size and gravity separation steps. The volume/mass of sample was drastically decreased since the mass of the final sample was only 3.3 % of the initial one. Co content increased from 0.16 wt% in the limonite to 2.3 wt% in the concentrate, representing an enrichment factor of 13.8 and recovery yield of 60 %. Co, Mn and Ni leaching yields reached 87 %, 95 % and 80 % respectively in the Mn oxides concentrate leaching experiment. The difference in Ni behaviour was consistent with the mineralogical composition: Ni was mainly carried by the goethite in the laterite, while it was hosted mainly by the Mn oxyhydroxides in the Mn oxides concentrate. This study gives a proof of concept for the development a robust pre-concentration process to recover Co.</div></div>","PeriodicalId":8064,"journal":{"name":"Applied Geochemistry","volume":"193 ","pages":"Article 106569"},"PeriodicalIF":3.4000,"publicationDate":"2025-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Characterisation, concentration and acidic reductive leaching of limonitic laterites from New Caledonia\",\"authors\":\"Agathe Hubau , Agnieszka Dybowska , Paul F. Schofield , Diego Gianolio , Ana Santos , Richard J. Herrington , Douglas Pino-Herrera , Hafida Tris , Marion Erard , Anne-Gwénaëlle Guezennec\",\"doi\":\"10.1016/j.apgeochem.2025.106569\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study aimed at determining Ni and Co leaching kinetics from a New Caledonian laterite in an acidic medium (H<sub>2</sub>SO<sub>4</sub> pH 1.5) and in a reductive environment (addition of SO<sub>3</sub><sup>2−</sup> or Fe(II)) at 46 °C. The mineralogical study revealed that Co was mainly carried by Mn oxyhydroxides in the limonite sample. Conversely, Ni was hosted by both Fe and Mn oxyhydroxides. In the presence of a reductive reagent, Mn oxyhydroxides dissolved rapidly compared to goethite, the main Fe oxyhydroxide in the sample. Co, Mn and Ni reductive leaching yields reached 79 %, 83 % and 9 % respectively after 2 days. Based on these results, a Mn oxides concentrate was produced in order to efficiently leach Co while limiting Fe oxyhydroxide dissolution. This concentrate resulted from a combination of particle size and gravity separation steps. The volume/mass of sample was drastically decreased since the mass of the final sample was only 3.3 % of the initial one. Co content increased from 0.16 wt% in the limonite to 2.3 wt% in the concentrate, representing an enrichment factor of 13.8 and recovery yield of 60 %. Co, Mn and Ni leaching yields reached 87 %, 95 % and 80 % respectively in the Mn oxides concentrate leaching experiment. The difference in Ni behaviour was consistent with the mineralogical composition: Ni was mainly carried by the goethite in the laterite, while it was hosted mainly by the Mn oxyhydroxides in the Mn oxides concentrate. This study gives a proof of concept for the development a robust pre-concentration process to recover Co.</div></div>\",\"PeriodicalId\":8064,\"journal\":{\"name\":\"Applied Geochemistry\",\"volume\":\"193 \",\"pages\":\"Article 106569\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Geochemistry\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0883292725002926\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Geochemistry","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0883292725002926","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Characterisation, concentration and acidic reductive leaching of limonitic laterites from New Caledonia
This study aimed at determining Ni and Co leaching kinetics from a New Caledonian laterite in an acidic medium (H2SO4 pH 1.5) and in a reductive environment (addition of SO32− or Fe(II)) at 46 °C. The mineralogical study revealed that Co was mainly carried by Mn oxyhydroxides in the limonite sample. Conversely, Ni was hosted by both Fe and Mn oxyhydroxides. In the presence of a reductive reagent, Mn oxyhydroxides dissolved rapidly compared to goethite, the main Fe oxyhydroxide in the sample. Co, Mn and Ni reductive leaching yields reached 79 %, 83 % and 9 % respectively after 2 days. Based on these results, a Mn oxides concentrate was produced in order to efficiently leach Co while limiting Fe oxyhydroxide dissolution. This concentrate resulted from a combination of particle size and gravity separation steps. The volume/mass of sample was drastically decreased since the mass of the final sample was only 3.3 % of the initial one. Co content increased from 0.16 wt% in the limonite to 2.3 wt% in the concentrate, representing an enrichment factor of 13.8 and recovery yield of 60 %. Co, Mn and Ni leaching yields reached 87 %, 95 % and 80 % respectively in the Mn oxides concentrate leaching experiment. The difference in Ni behaviour was consistent with the mineralogical composition: Ni was mainly carried by the goethite in the laterite, while it was hosted mainly by the Mn oxyhydroxides in the Mn oxides concentrate. This study gives a proof of concept for the development a robust pre-concentration process to recover Co.
期刊介绍:
Applied Geochemistry is an international journal devoted to publication of original research papers, rapid research communications and selected review papers in geochemistry and urban geochemistry which have some practical application to an aspect of human endeavour, such as the preservation of the environment, health, waste disposal and the search for resources. Papers on applications of inorganic, organic and isotope geochemistry and geochemical processes are therefore welcome provided they meet the main criterion. Spatial and temporal monitoring case studies are only of interest to our international readership if they present new ideas of broad application.
Topics covered include: (1) Environmental geochemistry (including natural and anthropogenic aspects, and protection and remediation strategies); (2) Hydrogeochemistry (surface and groundwater); (3) Medical (urban) geochemistry; (4) The search for energy resources (in particular unconventional oil and gas or emerging metal resources); (5) Energy exploitation (in particular geothermal energy and CCS); (6) Upgrading of energy and mineral resources where there is a direct geochemical application; and (7) Waste disposal, including nuclear waste disposal.