非晶软磁体平衡机械-磁性能的顺序控制工程

IF 5.6 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Xiao Liu , Rong-Ce Sun , Si-Yi Di , Xue-Song Li , Jing Zhou , Qiang Li , Bao-an Sun , Hai-bo Ke , Wei-hua Wang , Haiyang Bai
{"title":"非晶软磁体平衡机械-磁性能的顺序控制工程","authors":"Xiao Liu ,&nbsp;Rong-Ce Sun ,&nbsp;Si-Yi Di ,&nbsp;Xue-Song Li ,&nbsp;Jing Zhou ,&nbsp;Qiang Li ,&nbsp;Bao-an Sun ,&nbsp;Hai-bo Ke ,&nbsp;Wei-hua Wang ,&nbsp;Haiyang Bai","doi":"10.1016/j.scriptamat.2025.117017","DOIUrl":null,"url":null,"abstract":"<div><div>Amorphous soft magnetic materials play pivotal roles in energy conversion, transmission, and storage for electronic devices. Emerging applications under high mechanical loads demand simultaneous optimization of mechanical properties. However, an inherent trade-off exists between achieving excellent soft magnetic performance and mechanical properties. Inspired by ultrafine dual-phase structural design, we propose a strategy utilizing composition fluctuations to construct Fe-rich and Fe-poor phases to construct tunable ultrafine dual-phase amorphous structures. By precise control of Fe-rich cluster structure ratio and inter-cluster spacing, we obtained an amorphous soft magnet with exceptional soft magnetic properties <span><math><mrow><mo>(</mo><msub><mi>B</mi><mi>s</mi></msub><mo>:</mo><mspace></mspace><mn>1.8</mn><mspace></mspace><mi>T</mi><mo>,</mo><mspace></mspace><msub><mi>H</mi><mi>c</mi></msub><mo>:</mo><mspace></mspace><mn>0.85</mn><mspace></mspace><mi>O</mi><mi>e</mi><mo>)</mo></mrow></math></span> alongside outstanding mechanical performance with negligible size effects, including a yield strength of 4.08 GPa <span><math><mrow><mo>(</mo><mi>σ</mi><mo>/</mo><mi>E</mi><mspace></mspace><mo>≈</mo><mspace></mspace><mn>0.03</mn><mo>)</mo></mrow></math></span> and 50% homogeneous plastic deformation. This design paradigm, enabling concurrent ultrahigh strength, plasticity, and soft magnetism, opens avenues for demanding applications such as high-load micro-electromechanical systems systems and thin-film inductor materials.</div></div>","PeriodicalId":423,"journal":{"name":"Scripta Materialia","volume":"271 ","pages":"Article 117017"},"PeriodicalIF":5.6000,"publicationDate":"2025-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Order control engineering for balanced mechanical-magnetic properties in amorphous soft magnets\",\"authors\":\"Xiao Liu ,&nbsp;Rong-Ce Sun ,&nbsp;Si-Yi Di ,&nbsp;Xue-Song Li ,&nbsp;Jing Zhou ,&nbsp;Qiang Li ,&nbsp;Bao-an Sun ,&nbsp;Hai-bo Ke ,&nbsp;Wei-hua Wang ,&nbsp;Haiyang Bai\",\"doi\":\"10.1016/j.scriptamat.2025.117017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Amorphous soft magnetic materials play pivotal roles in energy conversion, transmission, and storage for electronic devices. Emerging applications under high mechanical loads demand simultaneous optimization of mechanical properties. However, an inherent trade-off exists between achieving excellent soft magnetic performance and mechanical properties. Inspired by ultrafine dual-phase structural design, we propose a strategy utilizing composition fluctuations to construct Fe-rich and Fe-poor phases to construct tunable ultrafine dual-phase amorphous structures. By precise control of Fe-rich cluster structure ratio and inter-cluster spacing, we obtained an amorphous soft magnet with exceptional soft magnetic properties <span><math><mrow><mo>(</mo><msub><mi>B</mi><mi>s</mi></msub><mo>:</mo><mspace></mspace><mn>1.8</mn><mspace></mspace><mi>T</mi><mo>,</mo><mspace></mspace><msub><mi>H</mi><mi>c</mi></msub><mo>:</mo><mspace></mspace><mn>0.85</mn><mspace></mspace><mi>O</mi><mi>e</mi><mo>)</mo></mrow></math></span> alongside outstanding mechanical performance with negligible size effects, including a yield strength of 4.08 GPa <span><math><mrow><mo>(</mo><mi>σ</mi><mo>/</mo><mi>E</mi><mspace></mspace><mo>≈</mo><mspace></mspace><mn>0.03</mn><mo>)</mo></mrow></math></span> and 50% homogeneous plastic deformation. This design paradigm, enabling concurrent ultrahigh strength, plasticity, and soft magnetism, opens avenues for demanding applications such as high-load micro-electromechanical systems systems and thin-film inductor materials.</div></div>\",\"PeriodicalId\":423,\"journal\":{\"name\":\"Scripta Materialia\",\"volume\":\"271 \",\"pages\":\"Article 117017\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2025-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scripta Materialia\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1359646225004798\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scripta Materialia","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359646225004798","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

非晶软磁材料在电子器件的能量转换、传输和存储等方面起着至关重要的作用。在高机械载荷下的新兴应用要求同时优化机械性能。然而,在获得优异的软磁性能和机械性能之间存在固有的权衡。受超细双相结构设计的启发,我们提出了一种利用成分波动来构建富铁和贫铁相的策略,以构建可调谐的超细双相非晶结构。通过精确控制富铁团簇结构比和团簇间距,获得了具有优异软磁性能(Bs:1.8T,Hc:0.85Oe)的非晶软磁体,其屈服强度为4.08 GPa (σ/E≈0.03),且具有50%的均匀塑性变形,且尺寸效应可忽略不计。这种设计模式同时具有超高强度、可塑性和软磁性,为高负载微机电系统和薄膜电感材料等苛刻应用开辟了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Order control engineering for balanced mechanical-magnetic properties in amorphous soft magnets

Order control engineering for balanced mechanical-magnetic properties in amorphous soft magnets
Amorphous soft magnetic materials play pivotal roles in energy conversion, transmission, and storage for electronic devices. Emerging applications under high mechanical loads demand simultaneous optimization of mechanical properties. However, an inherent trade-off exists between achieving excellent soft magnetic performance and mechanical properties. Inspired by ultrafine dual-phase structural design, we propose a strategy utilizing composition fluctuations to construct Fe-rich and Fe-poor phases to construct tunable ultrafine dual-phase amorphous structures. By precise control of Fe-rich cluster structure ratio and inter-cluster spacing, we obtained an amorphous soft magnet with exceptional soft magnetic properties (Bs:1.8T,Hc:0.85Oe) alongside outstanding mechanical performance with negligible size effects, including a yield strength of 4.08 GPa (σ/E0.03) and 50% homogeneous plastic deformation. This design paradigm, enabling concurrent ultrahigh strength, plasticity, and soft magnetism, opens avenues for demanding applications such as high-load micro-electromechanical systems systems and thin-film inductor materials.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Scripta Materialia
Scripta Materialia 工程技术-材料科学:综合
CiteScore
11.40
自引率
5.00%
发文量
581
审稿时长
34 days
期刊介绍: Scripta Materialia is a LETTERS journal of Acta Materialia, providing a forum for the rapid publication of short communications on the relationship between the structure and the properties of inorganic materials. The emphasis is on originality rather than incremental research. Short reports on the development of materials with novel or substantially improved properties are also welcomed. Emphasis is on either the functional or mechanical behavior of metals, ceramics and semiconductors at all length scales.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信