{"title":"具有可调能量吸收和增强面内强度的密度梯度折纸Voronoi蜂窝的构造和变形","authors":"Jun-Yuan Zheng , Dien Hu , Cong Du , M.W. Fu","doi":"10.1016/j.jmatprotec.2025.119083","DOIUrl":null,"url":null,"abstract":"<div><div>The design of density-graded honeycombs with dimension-varying Voronoi cells is an approach that aims to achieve lightweight and multifunctional applications, which require consideration of both out-of-plane structural support and in-plane tunable energy absorption. In this research, an integrated structure enhancing the in-plane strength of Voronoi honeycomb by introducing origami-based folding, named density-graded origami Voronoi honeycomb (DOVH) was developed. Design configurations incorporating three density gradients and four fold angles were fabricated by micro laser powder bed fusion, and their mechanical responses, energy absorption, and crushing behaviors were investigated and validated. It is revealed that the density-graded structures exhibit two hardening stages without densification strain, whereas the non-gradient structures display an apparent plateau and densification stages. A larger fold angle not only enhances the elastic modulus, yield stress, stress after yielding, and energy absorption capacity, but also expands the area of stress concentration and promotes cushioning under blast loading. Meanwhile, a higher density gradient deteriorates the elastic performance and energy absorption due to the lower relative density involved in deformation, as the crushing mode changes from entire collapse to a progressive mode. It also leads to a uniform crushing boundary, maintaining a larger non-deformed region during later deformation, with smaller stress-concentrating regions. The crushing boundary develops in a wave-like morphology, following the fold angle. Additionally, a segmented empirical model was developed to describe the various deformation stages and to evaluate the strengthening effects of fold angle. This research provides design optimization to tailor structural performances for diverse cushioning requirements.</div></div>","PeriodicalId":367,"journal":{"name":"Journal of Materials Processing Technology","volume":"345 ","pages":"Article 119083"},"PeriodicalIF":7.5000,"publicationDate":"2025-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Construction and deformation of density-graded origami Voronoi honeycombs with tunable energy absorption and enhanced in-plane strength\",\"authors\":\"Jun-Yuan Zheng , Dien Hu , Cong Du , M.W. Fu\",\"doi\":\"10.1016/j.jmatprotec.2025.119083\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The design of density-graded honeycombs with dimension-varying Voronoi cells is an approach that aims to achieve lightweight and multifunctional applications, which require consideration of both out-of-plane structural support and in-plane tunable energy absorption. In this research, an integrated structure enhancing the in-plane strength of Voronoi honeycomb by introducing origami-based folding, named density-graded origami Voronoi honeycomb (DOVH) was developed. Design configurations incorporating three density gradients and four fold angles were fabricated by micro laser powder bed fusion, and their mechanical responses, energy absorption, and crushing behaviors were investigated and validated. It is revealed that the density-graded structures exhibit two hardening stages without densification strain, whereas the non-gradient structures display an apparent plateau and densification stages. A larger fold angle not only enhances the elastic modulus, yield stress, stress after yielding, and energy absorption capacity, but also expands the area of stress concentration and promotes cushioning under blast loading. Meanwhile, a higher density gradient deteriorates the elastic performance and energy absorption due to the lower relative density involved in deformation, as the crushing mode changes from entire collapse to a progressive mode. It also leads to a uniform crushing boundary, maintaining a larger non-deformed region during later deformation, with smaller stress-concentrating regions. The crushing boundary develops in a wave-like morphology, following the fold angle. Additionally, a segmented empirical model was developed to describe the various deformation stages and to evaluate the strengthening effects of fold angle. This research provides design optimization to tailor structural performances for diverse cushioning requirements.</div></div>\",\"PeriodicalId\":367,\"journal\":{\"name\":\"Journal of Materials Processing Technology\",\"volume\":\"345 \",\"pages\":\"Article 119083\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2025-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Processing Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0924013625003735\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, INDUSTRIAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Processing Technology","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0924013625003735","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
Construction and deformation of density-graded origami Voronoi honeycombs with tunable energy absorption and enhanced in-plane strength
The design of density-graded honeycombs with dimension-varying Voronoi cells is an approach that aims to achieve lightweight and multifunctional applications, which require consideration of both out-of-plane structural support and in-plane tunable energy absorption. In this research, an integrated structure enhancing the in-plane strength of Voronoi honeycomb by introducing origami-based folding, named density-graded origami Voronoi honeycomb (DOVH) was developed. Design configurations incorporating three density gradients and four fold angles were fabricated by micro laser powder bed fusion, and their mechanical responses, energy absorption, and crushing behaviors were investigated and validated. It is revealed that the density-graded structures exhibit two hardening stages without densification strain, whereas the non-gradient structures display an apparent plateau and densification stages. A larger fold angle not only enhances the elastic modulus, yield stress, stress after yielding, and energy absorption capacity, but also expands the area of stress concentration and promotes cushioning under blast loading. Meanwhile, a higher density gradient deteriorates the elastic performance and energy absorption due to the lower relative density involved in deformation, as the crushing mode changes from entire collapse to a progressive mode. It also leads to a uniform crushing boundary, maintaining a larger non-deformed region during later deformation, with smaller stress-concentrating regions. The crushing boundary develops in a wave-like morphology, following the fold angle. Additionally, a segmented empirical model was developed to describe the various deformation stages and to evaluate the strengthening effects of fold angle. This research provides design optimization to tailor structural performances for diverse cushioning requirements.
期刊介绍:
The Journal of Materials Processing Technology covers the processing techniques used in manufacturing components from metals and other materials. The journal aims to publish full research papers of original, significant and rigorous work and so to contribute to increased production efficiency and improved component performance.
Areas of interest to the journal include:
• Casting, forming and machining
• Additive processing and joining technologies
• The evolution of material properties under the specific conditions met in manufacturing processes
• Surface engineering when it relates specifically to a manufacturing process
• Design and behavior of equipment and tools.