通过物理引导的变分注意和概率干预在工业系统中的因果发现

IF 3.9 2区 工程技术 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Mohammadhossein Modirrousta , Alireza Memarian , Biao Huang
{"title":"通过物理引导的变分注意和概率干预在工业系统中的因果发现","authors":"Mohammadhossein Modirrousta ,&nbsp;Alireza Memarian ,&nbsp;Biao Huang","doi":"10.1016/j.compchemeng.2025.109420","DOIUrl":null,"url":null,"abstract":"<div><div>Industry 4.0 technologies demand robust fault detection and diagnosis systems distinguishing genuine causal relationships from spurious correlations in complex industrial processes. Traditional correlation-based approaches exhibit significant limitations with nonlinear dynamics, temporal dependencies, and uncertain operational conditions. This paper presents a physics-guided variational attention framework for causal discovery, integrating log-normal variational attention mechanisms with probabilistic interventions and domain expertise. The dual-attention architecture utilizes multivariate log-normal distributions to model asymmetric, positive-valued causal strengths, addressing limitations of symmetric Gaussian parameterizations. Physics-informed priors from operator knowledge are incorporated through Gaussian Mixture Models and transformed via moment-matching. Uncertainty quantification employs Monte Carlo sampling and conformal filtering for statistically rigorous causal validation. Evaluation across synthetic time-series data, Australian Refinery Process oscillation diagnosis, and Tennessee Eastman Process demonstrates superior performance versus baseline approaches. Log-normal variational attention consistently outperforms Gaussian alternatives, with physics-informed priors providing improvements under high-uncertainty conditions, establishing a robust foundation for industrial causal discovery applications.</div></div>","PeriodicalId":286,"journal":{"name":"Computers & Chemical Engineering","volume":"204 ","pages":"Article 109420"},"PeriodicalIF":3.9000,"publicationDate":"2025-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Causal discovery in industrial systems via physics-guided variational attention and probabilistic interventions\",\"authors\":\"Mohammadhossein Modirrousta ,&nbsp;Alireza Memarian ,&nbsp;Biao Huang\",\"doi\":\"10.1016/j.compchemeng.2025.109420\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Industry 4.0 technologies demand robust fault detection and diagnosis systems distinguishing genuine causal relationships from spurious correlations in complex industrial processes. Traditional correlation-based approaches exhibit significant limitations with nonlinear dynamics, temporal dependencies, and uncertain operational conditions. This paper presents a physics-guided variational attention framework for causal discovery, integrating log-normal variational attention mechanisms with probabilistic interventions and domain expertise. The dual-attention architecture utilizes multivariate log-normal distributions to model asymmetric, positive-valued causal strengths, addressing limitations of symmetric Gaussian parameterizations. Physics-informed priors from operator knowledge are incorporated through Gaussian Mixture Models and transformed via moment-matching. Uncertainty quantification employs Monte Carlo sampling and conformal filtering for statistically rigorous causal validation. Evaluation across synthetic time-series data, Australian Refinery Process oscillation diagnosis, and Tennessee Eastman Process demonstrates superior performance versus baseline approaches. Log-normal variational attention consistently outperforms Gaussian alternatives, with physics-informed priors providing improvements under high-uncertainty conditions, establishing a robust foundation for industrial causal discovery applications.</div></div>\",\"PeriodicalId\":286,\"journal\":{\"name\":\"Computers & Chemical Engineering\",\"volume\":\"204 \",\"pages\":\"Article 109420\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Chemical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0098135425004235\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0098135425004235","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

工业4.0技术需要强大的故障检测和诊断系统,以区分复杂工业过程中的真实因果关系和虚假关联。传统的基于相关性的方法在非线性动力学、时间依赖性和不确定的操作条件下表现出明显的局限性。本文提出了一个物理导向的因果发现变分注意框架,将对数正态变分注意机制与概率干预和领域专业知识相结合。双注意架构利用多元对数正态分布来模拟不对称的正值因果优势,解决了对称高斯参数化的局限性。通过高斯混合模型合并来自操作员知识的物理信息先验,并通过矩匹配进行转换。不确定性量化采用蒙特卡罗采样和保形滤波进行统计严格的因果验证。综合时间序列数据、澳大利亚炼油厂过程振荡诊断和田纳西伊士曼过程的评估显示,与基线方法相比,性能更优越。对数正态变分注意始终优于高斯选择,具有物理信息的先验在高不确定性条件下提供改进,为工业因果发现应用奠定了坚实的基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Causal discovery in industrial systems via physics-guided variational attention and probabilistic interventions
Industry 4.0 technologies demand robust fault detection and diagnosis systems distinguishing genuine causal relationships from spurious correlations in complex industrial processes. Traditional correlation-based approaches exhibit significant limitations with nonlinear dynamics, temporal dependencies, and uncertain operational conditions. This paper presents a physics-guided variational attention framework for causal discovery, integrating log-normal variational attention mechanisms with probabilistic interventions and domain expertise. The dual-attention architecture utilizes multivariate log-normal distributions to model asymmetric, positive-valued causal strengths, addressing limitations of symmetric Gaussian parameterizations. Physics-informed priors from operator knowledge are incorporated through Gaussian Mixture Models and transformed via moment-matching. Uncertainty quantification employs Monte Carlo sampling and conformal filtering for statistically rigorous causal validation. Evaluation across synthetic time-series data, Australian Refinery Process oscillation diagnosis, and Tennessee Eastman Process demonstrates superior performance versus baseline approaches. Log-normal variational attention consistently outperforms Gaussian alternatives, with physics-informed priors providing improvements under high-uncertainty conditions, establishing a robust foundation for industrial causal discovery applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computers & Chemical Engineering
Computers & Chemical Engineering 工程技术-工程:化工
CiteScore
8.70
自引率
14.00%
发文量
374
审稿时长
70 days
期刊介绍: Computers & Chemical Engineering is primarily a journal of record for new developments in the application of computing and systems technology to chemical engineering problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信