基于Sentinel-1图像的逐像素t测试的开放获取战斗损伤检测

IF 11.4 1区 地球科学 Q1 ENVIRONMENTAL SCIENCES
Ollie Ballinger
{"title":"基于Sentinel-1图像的逐像素t测试的开放获取战斗损伤检测","authors":"Ollie Ballinger","doi":"10.1016/j.rse.2025.115025","DOIUrl":null,"url":null,"abstract":"<div><div>In the context of recent, highly destructive conflicts in Gaza and Ukraine, reliable estimates of building damage are essential for an informed public discourse, human rights monitoring, and humanitarian aid provision. Given the contentious nature of conflict damage assessment, these estimates must be fully <span><span>reproducible</span><svg><path></path></svg></span>, explainable, and derived from open access data. This paper introduces a new method for building damage detection– the Pixel-Wise T-Test (PWTT)– that satisfies these conditions. Using a combination of freely-available synthetic aperture radar imagery and statistical change detection, the PWTT generates accurate conflict damage estimates across a wide area at regular time intervals. Accuracy is assessed using an original dataset of over 2 million labeled building footprints spanning 30 cities across Palestine, Ukraine, Sudan, Syria, and Iraq. Despite being simple and lightweight, the algorithm achieves building-level accuracy statistics (AUC=0.87 in the full sample) rivaling state of the art methods that use deep learning and high resolution imagery. The workflow is <span><span>open source</span><svg><path></path></svg></span> and deployed entirely within the Google Earth Engine environment, allowing for the generation of interactive Battle Damage Dashboards for <span><span>Ukraine</span><svg><path></path></svg></span> and <span><span>Gaza</span><svg><path></path></svg></span> that update in near-real time, enabling the public and humanitarian practitioners to immediately get estimates of damaged buildings in a given area.</div></div>","PeriodicalId":417,"journal":{"name":"Remote Sensing of Environment","volume":"331 ","pages":"Article 115025"},"PeriodicalIF":11.4000,"publicationDate":"2025-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Open access battle damage detection via Pixel-Wise T-Test on Sentinel-1 imagery\",\"authors\":\"Ollie Ballinger\",\"doi\":\"10.1016/j.rse.2025.115025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In the context of recent, highly destructive conflicts in Gaza and Ukraine, reliable estimates of building damage are essential for an informed public discourse, human rights monitoring, and humanitarian aid provision. Given the contentious nature of conflict damage assessment, these estimates must be fully <span><span>reproducible</span><svg><path></path></svg></span>, explainable, and derived from open access data. This paper introduces a new method for building damage detection– the Pixel-Wise T-Test (PWTT)– that satisfies these conditions. Using a combination of freely-available synthetic aperture radar imagery and statistical change detection, the PWTT generates accurate conflict damage estimates across a wide area at regular time intervals. Accuracy is assessed using an original dataset of over 2 million labeled building footprints spanning 30 cities across Palestine, Ukraine, Sudan, Syria, and Iraq. Despite being simple and lightweight, the algorithm achieves building-level accuracy statistics (AUC=0.87 in the full sample) rivaling state of the art methods that use deep learning and high resolution imagery. The workflow is <span><span>open source</span><svg><path></path></svg></span> and deployed entirely within the Google Earth Engine environment, allowing for the generation of interactive Battle Damage Dashboards for <span><span>Ukraine</span><svg><path></path></svg></span> and <span><span>Gaza</span><svg><path></path></svg></span> that update in near-real time, enabling the public and humanitarian practitioners to immediately get estimates of damaged buildings in a given area.</div></div>\",\"PeriodicalId\":417,\"journal\":{\"name\":\"Remote Sensing of Environment\",\"volume\":\"331 \",\"pages\":\"Article 115025\"},\"PeriodicalIF\":11.4000,\"publicationDate\":\"2025-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Remote Sensing of Environment\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0034425725004298\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Remote Sensing of Environment","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0034425725004298","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

在最近加沙和乌克兰高度破坏性冲突的背景下,可靠的建筑损坏估计对于知情的公共话语、人权监督和人道主义援助提供至关重要。鉴于冲突损害评估的争议性,这些估计必须完全可重复、可解释,并从开放获取的数据中得出。本文介绍了一种新的建筑物损伤检测方法——逐像素t检验(PWTT),该方法满足这些条件。利用可自由获取的合成孔径雷达图像和统计变化检测相结合,PWTT可以在规定的时间间隔内对大范围内的冲突损害进行准确的估计。使用原始数据集评估准确性,该数据集包含巴勒斯坦、乌克兰、苏丹、叙利亚和伊拉克30个城市的200多万个标记建筑足迹。尽管该算法简单且轻量级,但它实现了与使用深度学习和高分辨率图像的最先进方法相媲美的建筑级精度统计(在整个样本中AUC=0.87)。该工作流程是开源的,完全部署在谷歌地球引擎环境中,允许为乌克兰和加沙生成交互式战斗损害仪表板,该仪表板可以近乎实时地更新,使公众和人道主义从业者能够立即获得给定区域受损建筑的估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Open access battle damage detection via Pixel-Wise T-Test on Sentinel-1 imagery
In the context of recent, highly destructive conflicts in Gaza and Ukraine, reliable estimates of building damage are essential for an informed public discourse, human rights monitoring, and humanitarian aid provision. Given the contentious nature of conflict damage assessment, these estimates must be fully reproducible, explainable, and derived from open access data. This paper introduces a new method for building damage detection– the Pixel-Wise T-Test (PWTT)– that satisfies these conditions. Using a combination of freely-available synthetic aperture radar imagery and statistical change detection, the PWTT generates accurate conflict damage estimates across a wide area at regular time intervals. Accuracy is assessed using an original dataset of over 2 million labeled building footprints spanning 30 cities across Palestine, Ukraine, Sudan, Syria, and Iraq. Despite being simple and lightweight, the algorithm achieves building-level accuracy statistics (AUC=0.87 in the full sample) rivaling state of the art methods that use deep learning and high resolution imagery. The workflow is open source and deployed entirely within the Google Earth Engine environment, allowing for the generation of interactive Battle Damage Dashboards for Ukraine and Gaza that update in near-real time, enabling the public and humanitarian practitioners to immediately get estimates of damaged buildings in a given area.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Remote Sensing of Environment
Remote Sensing of Environment 环境科学-成像科学与照相技术
CiteScore
25.10
自引率
8.90%
发文量
455
审稿时长
53 days
期刊介绍: Remote Sensing of Environment (RSE) serves the Earth observation community by disseminating results on the theory, science, applications, and technology that contribute to advancing the field of remote sensing. With a thoroughly interdisciplinary approach, RSE encompasses terrestrial, oceanic, and atmospheric sensing. The journal emphasizes biophysical and quantitative approaches to remote sensing at local to global scales, covering a diverse range of applications and techniques. RSE serves as a vital platform for the exchange of knowledge and advancements in the dynamic field of remote sensing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信