五个ICU数据库中输血患者的比较联邦分析:使用Kullback-Leibler散度。

Johanna Schwinn, Seyedmostafa Sheikhalishahi, Matthaeus Morhart, Iñaki Soto-Rey, Mathias Kaspar, Ludwig Christian Hinske
{"title":"五个ICU数据库中输血患者的比较联邦分析:使用Kullback-Leibler散度。","authors":"Johanna Schwinn, Seyedmostafa Sheikhalishahi, Matthaeus Morhart, Iñaki Soto-Rey, Mathias Kaspar, Ludwig Christian Hinske","doi":"10.3233/SHTI251495","DOIUrl":null,"url":null,"abstract":"<p><p>This study assesses feature distribution differences across five intensive care databases using Kullback-Leibler Divergence (KLD). Analyzing bidirectional KLD patterns between individual databases and the composite of others, stratifying by transfusion status. Results reveal heterogeneity: HiRID shows highest divergence in both directions, particularly among transfusion cases; UKA exhibits moderate overall divergence but pronounced differences in transfusion scenarios; MIMIC-IV shows minimal divergence, indicating closest alignment with group distributions. Notably, transfusion cases consistently display higher divergence than non-transfusion cases across all databases, highlighting institution-specific practices. These findings stress the importance of assessing data heterogeneity before implementing federated learning models to understand generalization capabilities.</p>","PeriodicalId":94357,"journal":{"name":"Studies in health technology and informatics","volume":"332 ","pages":"57-61"},"PeriodicalIF":0.0000,"publicationDate":"2025-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparative Federated Analytics of Blood Transfused Patients in Five ICU Databases: Using Kullback-Leibler Divergence.\",\"authors\":\"Johanna Schwinn, Seyedmostafa Sheikhalishahi, Matthaeus Morhart, Iñaki Soto-Rey, Mathias Kaspar, Ludwig Christian Hinske\",\"doi\":\"10.3233/SHTI251495\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study assesses feature distribution differences across five intensive care databases using Kullback-Leibler Divergence (KLD). Analyzing bidirectional KLD patterns between individual databases and the composite of others, stratifying by transfusion status. Results reveal heterogeneity: HiRID shows highest divergence in both directions, particularly among transfusion cases; UKA exhibits moderate overall divergence but pronounced differences in transfusion scenarios; MIMIC-IV shows minimal divergence, indicating closest alignment with group distributions. Notably, transfusion cases consistently display higher divergence than non-transfusion cases across all databases, highlighting institution-specific practices. These findings stress the importance of assessing data heterogeneity before implementing federated learning models to understand generalization capabilities.</p>\",\"PeriodicalId\":94357,\"journal\":{\"name\":\"Studies in health technology and informatics\",\"volume\":\"332 \",\"pages\":\"57-61\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Studies in health technology and informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3233/SHTI251495\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studies in health technology and informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/SHTI251495","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究使用Kullback-Leibler散度(KLD)评估了五个重症监护数据库的特征分布差异。分析单个数据库之间的双向KLD模式和其他组合,按输血状况分层。结果显示异质性:HiRID在两个方向上都表现出最高的差异,特别是在输血病例中;UKA表现出适度的总体差异,但在输血情景中存在显著差异;MIMIC-IV显示最小的散度,表明与群体分布最接近。值得注意的是,在所有数据库中,输血病例始终显示出比非输血病例更高的差异,突出了机构具体做法。这些发现强调了在实现联邦学习模型之前评估数据异质性以理解泛化能力的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comparative Federated Analytics of Blood Transfused Patients in Five ICU Databases: Using Kullback-Leibler Divergence.

This study assesses feature distribution differences across five intensive care databases using Kullback-Leibler Divergence (KLD). Analyzing bidirectional KLD patterns between individual databases and the composite of others, stratifying by transfusion status. Results reveal heterogeneity: HiRID shows highest divergence in both directions, particularly among transfusion cases; UKA exhibits moderate overall divergence but pronounced differences in transfusion scenarios; MIMIC-IV shows minimal divergence, indicating closest alignment with group distributions. Notably, transfusion cases consistently display higher divergence than non-transfusion cases across all databases, highlighting institution-specific practices. These findings stress the importance of assessing data heterogeneity before implementing federated learning models to understand generalization capabilities.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信