评估药物不良事件检测合成电子病历数据生成的隐私性和效用。

Thu Dinh, Hercules Dalianis
{"title":"评估药物不良事件检测合成电子病历数据生成的隐私性和效用。","authors":"Thu Dinh, Hercules Dalianis","doi":"10.3233/SHTI251490","DOIUrl":null,"url":null,"abstract":"<p><p>This study examines the use of the Synthetic Data Vault (SDV) tool in generating synthetic EHR data for adverse drug events (ADE) detection. Experiments were conducted with three off-the-shelf synthetic data generators: GaussianCopula, Conditional Tabular Generative Adversarial Network (CTGAN) and Tabular Variational Autoencoder (TVAE), using a structured Swedish dataset. Evaluations included SynthEval metrics and downstream performance assessment using a 'train-on-synthetic, test-on-real' (TSTR) approach with Random Forest classifiers. Results show that TVAE's performance varied with dataset size and class balance, with larger datasets improving its performance. GaussianCopula provided more stable utility and stronger privacy protection at the cost of fidelity. CTGAN generated realistic data but exhibited inconsistent performance under TSTR evaluation. These findings highlight the importance of selecting synthetic data models based on healthcare application needs and dataset characteristics.</p>","PeriodicalId":94357,"journal":{"name":"Studies in health technology and informatics","volume":"332 ","pages":"32-36"},"PeriodicalIF":0.0000,"publicationDate":"2025-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluating Privacy and Utility in Synthetic EHR Data Generation for Adverse Drug Event Detection.\",\"authors\":\"Thu Dinh, Hercules Dalianis\",\"doi\":\"10.3233/SHTI251490\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study examines the use of the Synthetic Data Vault (SDV) tool in generating synthetic EHR data for adverse drug events (ADE) detection. Experiments were conducted with three off-the-shelf synthetic data generators: GaussianCopula, Conditional Tabular Generative Adversarial Network (CTGAN) and Tabular Variational Autoencoder (TVAE), using a structured Swedish dataset. Evaluations included SynthEval metrics and downstream performance assessment using a 'train-on-synthetic, test-on-real' (TSTR) approach with Random Forest classifiers. Results show that TVAE's performance varied with dataset size and class balance, with larger datasets improving its performance. GaussianCopula provided more stable utility and stronger privacy protection at the cost of fidelity. CTGAN generated realistic data but exhibited inconsistent performance under TSTR evaluation. These findings highlight the importance of selecting synthetic data models based on healthcare application needs and dataset characteristics.</p>\",\"PeriodicalId\":94357,\"journal\":{\"name\":\"Studies in health technology and informatics\",\"volume\":\"332 \",\"pages\":\"32-36\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Studies in health technology and informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3233/SHTI251490\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studies in health technology and informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/SHTI251490","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究探讨了合成数据库(SDV)工具在生成药物不良事件(ADE)检测合成电子病历数据中的使用。实验使用三种现成的合成数据生成器:GaussianCopula,条件表格生成对抗网络(CTGAN)和表格变分自动编码器(TVAE),使用结构化的瑞典数据集。评估包括SynthEval指标和下游性能评估,使用随机森林分类器的“合成训练,真实测试”(TSTR)方法。结果表明,TVAE的性能随数据集大小和类平衡而变化,数据集越大,性能越好。GaussianCopula以保真度为代价提供了更稳定的效用和更强的隐私保护。CTGAN生成了真实的数据,但在TSTR评估下表现出不一致的性能。这些发现强调了根据医疗保健应用需求和数据集特征选择综合数据模型的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Evaluating Privacy and Utility in Synthetic EHR Data Generation for Adverse Drug Event Detection.

This study examines the use of the Synthetic Data Vault (SDV) tool in generating synthetic EHR data for adverse drug events (ADE) detection. Experiments were conducted with three off-the-shelf synthetic data generators: GaussianCopula, Conditional Tabular Generative Adversarial Network (CTGAN) and Tabular Variational Autoencoder (TVAE), using a structured Swedish dataset. Evaluations included SynthEval metrics and downstream performance assessment using a 'train-on-synthetic, test-on-real' (TSTR) approach with Random Forest classifiers. Results show that TVAE's performance varied with dataset size and class balance, with larger datasets improving its performance. GaussianCopula provided more stable utility and stronger privacy protection at the cost of fidelity. CTGAN generated realistic data but exhibited inconsistent performance under TSTR evaluation. These findings highlight the importance of selecting synthetic data models based on healthcare application needs and dataset characteristics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信