将大型语言模型集成到产科电子病历中:葡萄牙的MedGPT用例。

Vinícius Lima, Rute Almeida, Filipe Bernardi, Francisco Bischoff, Luís Conceição, Daniel Rodrigues, Ricardo Correia, Goreti Marreiros, Alberto Freitas
{"title":"将大型语言模型集成到产科电子病历中:葡萄牙的MedGPT用例。","authors":"Vinícius Lima, Rute Almeida, Filipe Bernardi, Francisco Bischoff, Luís Conceição, Daniel Rodrigues, Ricardo Correia, Goreti Marreiros, Alberto Freitas","doi":"10.3233/SHTI251559","DOIUrl":null,"url":null,"abstract":"<p><p>ObsCare, an obstetric electronic health record system used in 20 Portuguese hospitals, has enabled the collection of longitudinal maternal health data. Within the MedGPT project, we aim to integrate fine-tuned large language models into ObsCare to summarize a pregnant patient's health journey, provide culturally sensitive decision support, and generate personalized educational content. The project addresses critical gaps in obstetric care caused by workforce shortages, increasing C-section rates, and rising maternal age in Portugal. We describe the planned architecture, data sources, and early implementation strategies, highlighting how MedGPT will reduce clinicians' documentation burden and enhance patient engagement. This work-in-progress reflects the preliminary results of a European collaboration to develop ethically aligned Generative AI solutions in healthcare.</p>","PeriodicalId":94357,"journal":{"name":"Studies in health technology and informatics","volume":"332 ","pages":"345-349"},"PeriodicalIF":0.0000,"publicationDate":"2025-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integrating Large Language Models into Obstetric EHRs: The MedGPT Use Case in Portugal.\",\"authors\":\"Vinícius Lima, Rute Almeida, Filipe Bernardi, Francisco Bischoff, Luís Conceição, Daniel Rodrigues, Ricardo Correia, Goreti Marreiros, Alberto Freitas\",\"doi\":\"10.3233/SHTI251559\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>ObsCare, an obstetric electronic health record system used in 20 Portuguese hospitals, has enabled the collection of longitudinal maternal health data. Within the MedGPT project, we aim to integrate fine-tuned large language models into ObsCare to summarize a pregnant patient's health journey, provide culturally sensitive decision support, and generate personalized educational content. The project addresses critical gaps in obstetric care caused by workforce shortages, increasing C-section rates, and rising maternal age in Portugal. We describe the planned architecture, data sources, and early implementation strategies, highlighting how MedGPT will reduce clinicians' documentation burden and enhance patient engagement. This work-in-progress reflects the preliminary results of a European collaboration to develop ethically aligned Generative AI solutions in healthcare.</p>\",\"PeriodicalId\":94357,\"journal\":{\"name\":\"Studies in health technology and informatics\",\"volume\":\"332 \",\"pages\":\"345-349\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Studies in health technology and informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3233/SHTI251559\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studies in health technology and informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/SHTI251559","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在葡萄牙20家医院使用的产科电子健康记录系统ObsCare使收集纵向孕产妇健康数据成为可能。在MedGPT项目中,我们的目标是将微调的大型语言模型集成到ObsCare中,以总结怀孕患者的健康历程,提供具有文化敏感性的决策支持,并生成个性化的教育内容。该项目解决了葡萄牙劳动力短缺、剖腹产率上升和产妇年龄上升造成的产科护理严重缺口。我们描述了计划的架构、数据源和早期实施策略,重点介绍了MedGPT将如何减轻临床医生的文档负担并提高患者参与度。这项正在进行的工作反映了欧洲合作在医疗保健领域开发符合伦理的生成人工智能解决方案的初步结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Integrating Large Language Models into Obstetric EHRs: The MedGPT Use Case in Portugal.

ObsCare, an obstetric electronic health record system used in 20 Portuguese hospitals, has enabled the collection of longitudinal maternal health data. Within the MedGPT project, we aim to integrate fine-tuned large language models into ObsCare to summarize a pregnant patient's health journey, provide culturally sensitive decision support, and generate personalized educational content. The project addresses critical gaps in obstetric care caused by workforce shortages, increasing C-section rates, and rising maternal age in Portugal. We describe the planned architecture, data sources, and early implementation strategies, highlighting how MedGPT will reduce clinicians' documentation burden and enhance patient engagement. This work-in-progress reflects the preliminary results of a European collaboration to develop ethically aligned Generative AI solutions in healthcare.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信