语义驱动的队列数据协调到OMOP CDM模式。

Raquel Paradinha, Vicente Barros, João Rafael Almeida, José Luís Oliveira
{"title":"语义驱动的队列数据协调到OMOP CDM模式。","authors":"Raquel Paradinha, Vicente Barros, João Rafael Almeida, José Luís Oliveira","doi":"10.3233/SHTI251524","DOIUrl":null,"url":null,"abstract":"<p><p>Clinical research often requires integrating data from diverse sources, which differ not only in structure but also in semantics and language. Traditional extract-transform-load (ETL) pipelines struggle to handle semantic variability and lack built-in support for multilingual or ontology-driven harmonisation. This fragmentation limits the interoperability and reuse of clinical datasets in large-scale analyses. In this paper, we propose an integrated framework that combines an embedding-based concept mapping engine with an automated ETL pipeline using Apache Airflow. The mapping engine uses transformer-based embeddings to align clinical terms with standard concepts, producing outputs in White Rabbit and Usagi-compatible formats to ensure backward interoperability. We validated the system using multilingual real-world datasets demonstrating its ability to handle heterogeneous inputs and maintain end-to-end reproducibility.</p>","PeriodicalId":94357,"journal":{"name":"Studies in health technology and informatics","volume":"332 ","pages":"190-194"},"PeriodicalIF":0.0000,"publicationDate":"2025-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Semantic-Driven for Cohort Data Harmonisation into OMOP CDM Schema.\",\"authors\":\"Raquel Paradinha, Vicente Barros, João Rafael Almeida, José Luís Oliveira\",\"doi\":\"10.3233/SHTI251524\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Clinical research often requires integrating data from diverse sources, which differ not only in structure but also in semantics and language. Traditional extract-transform-load (ETL) pipelines struggle to handle semantic variability and lack built-in support for multilingual or ontology-driven harmonisation. This fragmentation limits the interoperability and reuse of clinical datasets in large-scale analyses. In this paper, we propose an integrated framework that combines an embedding-based concept mapping engine with an automated ETL pipeline using Apache Airflow. The mapping engine uses transformer-based embeddings to align clinical terms with standard concepts, producing outputs in White Rabbit and Usagi-compatible formats to ensure backward interoperability. We validated the system using multilingual real-world datasets demonstrating its ability to handle heterogeneous inputs and maintain end-to-end reproducibility.</p>\",\"PeriodicalId\":94357,\"journal\":{\"name\":\"Studies in health technology and informatics\",\"volume\":\"332 \",\"pages\":\"190-194\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Studies in health technology and informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3233/SHTI251524\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studies in health technology and informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/SHTI251524","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

临床研究往往需要整合来自不同来源的数据,这些数据不仅在结构上不同,而且在语义和语言上也不同。传统的提取-转换-加载(ETL)管道难以处理语义可变性,并且缺乏对多语言或本体驱动的协调的内置支持。这种碎片化限制了临床数据集在大规模分析中的互操作性和重用性。在本文中,我们提出了一个集成框架,它结合了基于嵌入的概念映射引擎和使用Apache Airflow的自动化ETL管道。映射引擎使用基于变压器的嵌入将临床术语与标准概念对齐,以White Rabbit和usagi兼容的格式生成输出,以确保向后互操作性。我们使用多语言真实世界数据集验证了该系统,展示了其处理异构输入和保持端到端可重复性的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Semantic-Driven for Cohort Data Harmonisation into OMOP CDM Schema.

Clinical research often requires integrating data from diverse sources, which differ not only in structure but also in semantics and language. Traditional extract-transform-load (ETL) pipelines struggle to handle semantic variability and lack built-in support for multilingual or ontology-driven harmonisation. This fragmentation limits the interoperability and reuse of clinical datasets in large-scale analyses. In this paper, we propose an integrated framework that combines an embedding-based concept mapping engine with an automated ETL pipeline using Apache Airflow. The mapping engine uses transformer-based embeddings to align clinical terms with standard concepts, producing outputs in White Rabbit and Usagi-compatible formats to ensure backward interoperability. We validated the system using multilingual real-world datasets demonstrating its ability to handle heterogeneous inputs and maintain end-to-end reproducibility.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信