一个值得信赖的健康AI开发框架与示例代码管道。

Carlos De-Manuel-Vicente, David Fernández-Narro, Vicent Blanes-Selva, Juan M García-Gómez, Carlos Sáez
{"title":"一个值得信赖的健康AI开发框架与示例代码管道。","authors":"Carlos De-Manuel-Vicente, David Fernández-Narro, Vicent Blanes-Selva, Juan M García-Gómez, Carlos Sáez","doi":"10.3233/SHTI251522","DOIUrl":null,"url":null,"abstract":"<p><p>Trustworthy health Artificial Intelligence (AI) must respect human rights and ethical standards, while ensuring AI robustness and safety. Despite the availability of general good practices, health AI developers lack a practical guide to address the construction of trustworthy AI (TAI). We introduce a TAI development framework (TAIDEV) as a reference guideline for the creation of TAI health systems. The framework core is a TAI matrix that classifies technical methods addressing the EU guideline for Trustworthy AI requirements (privacy and data governance; diversity, non-discrimination and fairness; transparency; and technical robustness and safety) across the different AI lifecycle stages (data preparation; model development, deployment and use, and model management). TAIDEV is complemented with generic, customizable example code pipelines for the different requirements with state-of-the-art AI techniques using Python. A related checklist is provided to help validate the application of different methods on new problems. The framework is validated using two open datasets, the UCI Heart Disease and the Diabetes 130-US Hospitals, with four code pipelines adapting TAIDEV for each dataset. The TAI framework and its example tutorials are provided as Open Source in the GitHub repository: https://github.com/bdslab-upv/trustworthy-ai. The TAIDEV framework provides health AI developers with an extensible theoretical development guideline with practical examples, aiming to ensure the development of ethical, robust and safe health AI and Clinical Decision Support Systems.</p>","PeriodicalId":94357,"journal":{"name":"Studies in health technology and informatics","volume":"332 ","pages":"180-184"},"PeriodicalIF":0.0000,"publicationDate":"2025-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Trustworthy Health AI Development Framework with Example Code Pipelines.\",\"authors\":\"Carlos De-Manuel-Vicente, David Fernández-Narro, Vicent Blanes-Selva, Juan M García-Gómez, Carlos Sáez\",\"doi\":\"10.3233/SHTI251522\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Trustworthy health Artificial Intelligence (AI) must respect human rights and ethical standards, while ensuring AI robustness and safety. Despite the availability of general good practices, health AI developers lack a practical guide to address the construction of trustworthy AI (TAI). We introduce a TAI development framework (TAIDEV) as a reference guideline for the creation of TAI health systems. The framework core is a TAI matrix that classifies technical methods addressing the EU guideline for Trustworthy AI requirements (privacy and data governance; diversity, non-discrimination and fairness; transparency; and technical robustness and safety) across the different AI lifecycle stages (data preparation; model development, deployment and use, and model management). TAIDEV is complemented with generic, customizable example code pipelines for the different requirements with state-of-the-art AI techniques using Python. A related checklist is provided to help validate the application of different methods on new problems. The framework is validated using two open datasets, the UCI Heart Disease and the Diabetes 130-US Hospitals, with four code pipelines adapting TAIDEV for each dataset. The TAI framework and its example tutorials are provided as Open Source in the GitHub repository: https://github.com/bdslab-upv/trustworthy-ai. The TAIDEV framework provides health AI developers with an extensible theoretical development guideline with practical examples, aiming to ensure the development of ethical, robust and safe health AI and Clinical Decision Support Systems.</p>\",\"PeriodicalId\":94357,\"journal\":{\"name\":\"Studies in health technology and informatics\",\"volume\":\"332 \",\"pages\":\"180-184\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Studies in health technology and informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3233/SHTI251522\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studies in health technology and informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/SHTI251522","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

人工智能(AI)必须尊重人权和道德标准,同时确保人工智能的鲁棒性和安全性。尽管有一般的良好做法,但卫生人工智能开发人员缺乏解决构建可信赖人工智能(TAI)问题的实用指南。我们介绍了一个TAI发展框架(TAIDEV),作为创建TAI卫生系统的参考指南。该框架核心是一个TAI矩阵,该矩阵对不同人工智能生命周期阶段(数据准备、模型开发、部署和使用以及模型管理)的技术方法进行分类,以满足欧盟可信赖人工智能要求指南(隐私和数据治理;多样性、非歧视和公平;透明度;以及技术稳健性和安全性)。TAIDEV补充了通用的、可定制的示例代码管道,以满足使用Python的最先进的人工智能技术的不同需求。提供了一个相关的检查表,以帮助验证不同方法在新问题上的应用。该框架使用两个开放数据集进行验证,即UCI心脏病和糖尿病130-美国医院,每个数据集有四个代码管道适应TAIDEV。TAI框架及其示例教程在GitHub存储库中作为开放源代码提供:https://github.com/bdslab-upv/trustworthy-ai。TAIDEV框架为卫生人工智能开发人员提供了可扩展的理论开发指南和实践示例,旨在确保开发道德,稳健和安全的卫生人工智能和临床决策支持系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Trustworthy Health AI Development Framework with Example Code Pipelines.

Trustworthy health Artificial Intelligence (AI) must respect human rights and ethical standards, while ensuring AI robustness and safety. Despite the availability of general good practices, health AI developers lack a practical guide to address the construction of trustworthy AI (TAI). We introduce a TAI development framework (TAIDEV) as a reference guideline for the creation of TAI health systems. The framework core is a TAI matrix that classifies technical methods addressing the EU guideline for Trustworthy AI requirements (privacy and data governance; diversity, non-discrimination and fairness; transparency; and technical robustness and safety) across the different AI lifecycle stages (data preparation; model development, deployment and use, and model management). TAIDEV is complemented with generic, customizable example code pipelines for the different requirements with state-of-the-art AI techniques using Python. A related checklist is provided to help validate the application of different methods on new problems. The framework is validated using two open datasets, the UCI Heart Disease and the Diabetes 130-US Hospitals, with four code pipelines adapting TAIDEV for each dataset. The TAI framework and its example tutorials are provided as Open Source in the GitHub repository: https://github.com/bdslab-upv/trustworthy-ai. The TAIDEV framework provides health AI developers with an extensible theoretical development guideline with practical examples, aiming to ensure the development of ethical, robust and safe health AI and Clinical Decision Support Systems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信