量化数据集移位下更安全健康AI性能预测中的认知不确定性。

David Fernández-Narro, Pablo Ferri, Juan Miguel García-Gómez, Carlos Sáez
{"title":"量化数据集移位下更安全健康AI性能预测中的认知不确定性。","authors":"David Fernández-Narro, Pablo Ferri, Juan Miguel García-Gómez, Carlos Sáez","doi":"10.3233/SHTI251493","DOIUrl":null,"url":null,"abstract":"<p><p>Out-of-distribution data , data coming from a different distribution with respect to the training data, entails a critical challenge for the robustness and safety of AI-based clinical decision support systems (CDSSs). This work aims to investigate whether real-time, sample-level quantification of epistemic uncertainty, the model's uncertainty due to limited knowledge of the true data-generating process, can act as a lightweight safety layer for health AI and CDSSs, targeting model updates and spotlighting human review. To this end, we trained and evaluated a continual learning-based neural network classifier on quarterly batches in a real-world Mexican COVID-19 dataset. For each training window, we estimated the distribution of the prediction epistemic uncertainties using Monte Carlo Dropout. We set a data-driven uncertainty threshold to determine potential out-of-distribution samples at 95% of that distribution. Results across all training-test time pairs show that samples below this threshold exhibit consistently higher macro-F1 and render performance virtually invariant to temporal drift, while the flagged samples captured most prediction errors. Since our method requires no model retraining, sample-level epistemic uncertainty screening offers a practical and efficient first line of defense for deploying health-AI systems in dynamic environments.</p>","PeriodicalId":94357,"journal":{"name":"Studies in health technology and informatics","volume":"332 ","pages":"47-51"},"PeriodicalIF":0.0000,"publicationDate":"2025-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantifying Epistemic Uncertainty in Predictions for Safer Health AI Performance Under Dataset Shifts.\",\"authors\":\"David Fernández-Narro, Pablo Ferri, Juan Miguel García-Gómez, Carlos Sáez\",\"doi\":\"10.3233/SHTI251493\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Out-of-distribution data , data coming from a different distribution with respect to the training data, entails a critical challenge for the robustness and safety of AI-based clinical decision support systems (CDSSs). This work aims to investigate whether real-time, sample-level quantification of epistemic uncertainty, the model's uncertainty due to limited knowledge of the true data-generating process, can act as a lightweight safety layer for health AI and CDSSs, targeting model updates and spotlighting human review. To this end, we trained and evaluated a continual learning-based neural network classifier on quarterly batches in a real-world Mexican COVID-19 dataset. For each training window, we estimated the distribution of the prediction epistemic uncertainties using Monte Carlo Dropout. We set a data-driven uncertainty threshold to determine potential out-of-distribution samples at 95% of that distribution. Results across all training-test time pairs show that samples below this threshold exhibit consistently higher macro-F1 and render performance virtually invariant to temporal drift, while the flagged samples captured most prediction errors. Since our method requires no model retraining, sample-level epistemic uncertainty screening offers a practical and efficient first line of defense for deploying health-AI systems in dynamic environments.</p>\",\"PeriodicalId\":94357,\"journal\":{\"name\":\"Studies in health technology and informatics\",\"volume\":\"332 \",\"pages\":\"47-51\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Studies in health technology and informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3233/SHTI251493\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studies in health technology and informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/SHTI251493","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

分布外数据,即来自于训练数据的不同分布的数据,对基于人工智能的临床决策支持系统(cdss)的鲁棒性和安全性提出了重大挑战。这项工作旨在研究实时、样本级量化的认知不确定性(由于对真实数据生成过程的了解有限而导致的模型不确定性)是否可以作为健康人工智能和cdss的轻量级安全层,针对模型更新和重点关注人类审查。为此,我们在真实的墨西哥COVID-19数据集中训练并评估了基于季度批次的持续学习神经网络分类器。对于每个训练窗口,我们使用蒙特卡罗Dropout估计预测认知不确定性的分布。我们设置了一个数据驱动的不确定性阈值,以确定该分布的95%的潜在分布外样本。所有训练-测试时间对的结果表明,低于该阈值的样本始终表现出较高的宏观f1,并且几乎不受时间漂移的影响,而标记的样本捕获了大多数预测错误。由于我们的方法不需要模型再训练,样本水平的认知不确定性筛选为在动态环境中部署卫生人工智能系统提供了实用和有效的第一道防线。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quantifying Epistemic Uncertainty in Predictions for Safer Health AI Performance Under Dataset Shifts.

Out-of-distribution data , data coming from a different distribution with respect to the training data, entails a critical challenge for the robustness and safety of AI-based clinical decision support systems (CDSSs). This work aims to investigate whether real-time, sample-level quantification of epistemic uncertainty, the model's uncertainty due to limited knowledge of the true data-generating process, can act as a lightweight safety layer for health AI and CDSSs, targeting model updates and spotlighting human review. To this end, we trained and evaluated a continual learning-based neural network classifier on quarterly batches in a real-world Mexican COVID-19 dataset. For each training window, we estimated the distribution of the prediction epistemic uncertainties using Monte Carlo Dropout. We set a data-driven uncertainty threshold to determine potential out-of-distribution samples at 95% of that distribution. Results across all training-test time pairs show that samples below this threshold exhibit consistently higher macro-F1 and render performance virtually invariant to temporal drift, while the flagged samples captured most prediction errors. Since our method requires no model retraining, sample-level epistemic uncertainty screening offers a practical and efficient first line of defense for deploying health-AI systems in dynamic environments.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信