渗透应激触发快速和可逆的PMF在大肠杆菌崩溃。

Luis Meneses, Eric M Dudebout, Sophia Belser, Jinming Yang, Navish Wadhwa
{"title":"渗透应激触发快速和可逆的PMF在大肠杆菌崩溃。","authors":"Luis Meneses, Eric M Dudebout, Sophia Belser, Jinming Yang, Navish Wadhwa","doi":"10.1101/2025.09.25.678644","DOIUrl":null,"url":null,"abstract":"<p><p>Environmental stressors routinely impact bacteria and affect their physiology. Among the most important physiological parameters is the proton motive force (PMF), that powers vital cellular processes and molecular machines. Measuring how PMF responds to environmental stress in real time requires tools that capture rapid physiological changes with high temporal resolution. Here, we use the bacterial flagella motor as an <i>in vivo</i> voltmeter to probe PMF dynamics during hyperosmotic shock. Because motor rotation frequency scales linearly with PMF, this approach enables single-cell electrophysiology with high temporal resolution. We find that hyperosmotic stress causes a rapid and reversible loss of PMF in <i>Escherichia coli</i>, independent of the osmolyte used or the presence of potassium ions. We corroborate these findings by using the Nernstian dye, tetramethyl rhodamine methyl ester (TMRM), showing that hyperosmotic shock leads to membrane depolarization. Together, our results highlight the efficacy of the flagellar motor as powerful tool for probing bacterial electrophysiology and reveal that hyperosmotic stress directly disrupts cellular energetics in addition to its mechanical effects.</p>","PeriodicalId":519960,"journal":{"name":"bioRxiv : the preprint server for biology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12485702/pdf/","citationCount":"0","resultStr":"{\"title\":\"Osmotic stress triggers fast and reversible PMF collapse in <i>Escherichia coli</i>.\",\"authors\":\"Luis Meneses, Eric M Dudebout, Sophia Belser, Jinming Yang, Navish Wadhwa\",\"doi\":\"10.1101/2025.09.25.678644\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Environmental stressors routinely impact bacteria and affect their physiology. Among the most important physiological parameters is the proton motive force (PMF), that powers vital cellular processes and molecular machines. Measuring how PMF responds to environmental stress in real time requires tools that capture rapid physiological changes with high temporal resolution. Here, we use the bacterial flagella motor as an <i>in vivo</i> voltmeter to probe PMF dynamics during hyperosmotic shock. Because motor rotation frequency scales linearly with PMF, this approach enables single-cell electrophysiology with high temporal resolution. We find that hyperosmotic stress causes a rapid and reversible loss of PMF in <i>Escherichia coli</i>, independent of the osmolyte used or the presence of potassium ions. We corroborate these findings by using the Nernstian dye, tetramethyl rhodamine methyl ester (TMRM), showing that hyperosmotic shock leads to membrane depolarization. Together, our results highlight the efficacy of the flagellar motor as powerful tool for probing bacterial electrophysiology and reveal that hyperosmotic stress directly disrupts cellular energetics in addition to its mechanical effects.</p>\",\"PeriodicalId\":519960,\"journal\":{\"name\":\"bioRxiv : the preprint server for biology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12485702/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"bioRxiv : the preprint server for biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2025.09.25.678644\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv : the preprint server for biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2025.09.25.678644","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

环境压力通常会影响细菌并影响它们的生理机能。其中最重要的生理参数是质子动力(PMF),它为重要的细胞过程和分子机器提供动力。实时测量PMF对环境压力的反应需要能够以高时间分辨率捕捉快速生理变化的工具。在这里,我们使用细菌鞭毛马达作为体内电压表来探测高渗休克期间PMF的动态。由于电机旋转频率与PMF呈线性关系,因此该方法可以实现高时间分辨率的单细胞电生理。我们发现,高渗胁迫导致大肠杆菌中PMF的快速和可逆损失,独立于所使用的渗透剂或钾离子的存在。我们通过使用Nernstian染料,四甲基罗丹明甲酯(TMRM)证实了这些发现,表明高渗休克导致膜去极化。总之,我们的研究结果强调了鞭毛马达作为探测细菌电生理的有力工具的功效,并揭示了高渗应激除了其机械效应外,还直接破坏了细胞能量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Osmotic stress triggers fast and reversible PMF collapse in Escherichia coli.

Environmental stressors routinely impact bacteria and affect their physiology. Among the most important physiological parameters is the proton motive force (PMF), that powers vital cellular processes and molecular machines. Measuring how PMF responds to environmental stress in real time requires tools that capture rapid physiological changes with high temporal resolution. Here, we use the bacterial flagella motor as an in vivo voltmeter to probe PMF dynamics during hyperosmotic shock. Because motor rotation frequency scales linearly with PMF, this approach enables single-cell electrophysiology with high temporal resolution. We find that hyperosmotic stress causes a rapid and reversible loss of PMF in Escherichia coli, independent of the osmolyte used or the presence of potassium ions. We corroborate these findings by using the Nernstian dye, tetramethyl rhodamine methyl ester (TMRM), showing that hyperosmotic shock leads to membrane depolarization. Together, our results highlight the efficacy of the flagellar motor as powerful tool for probing bacterial electrophysiology and reveal that hyperosmotic stress directly disrupts cellular energetics in addition to its mechanical effects.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信