gpu加速FREDopt包同步剂量和LETd质子放疗方案优化的优越性方法。

ArXiv Pub Date : 2025-09-24
Damian Borys, Jan Gajewski, Tobias Becher, Yair Censor, Renata Kopeć, Marzena Rydygier, Angelo Schiavi, Tomasz Skóra, Anna Spaleniak, Niklas Wahl, Agnieszka Wochnik, Antoni Ruciński
{"title":"gpu加速FREDopt包同步剂量和LETd质子放疗方案优化的优越性方法。","authors":"Damian Borys, Jan Gajewski, Tobias Becher, Yair Censor, Renata Kopeć, Marzena Rydygier, Angelo Schiavi, Tomasz Skóra, Anna Spaleniak, Niklas Wahl, Agnieszka Wochnik, Antoni Ruciński","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>This study presents FREDopt, a newly developed GPU-accelerated open-source optimization software for simultaneous proton dose and dose-averaged LET (LETd) optimization in IMPT treatment planning. FREDopt was implemented entirely in Python, leveraging CuPy for GPU acceleration and incorporating fast Monte Carlo (MC) simulations from the FRED code. The treatment plan optimization workflow includes pre-optimization and optimization, the latter equipped with a novel superiorization of feasibility-seeking algorithms. Feasibility-seeking requires finding a point that satisfies prescribed constraints. Superiorization interlaces computational perturbations into iterative feasibility-seeking steps to steer them toward a superior feasible point, replacing the need for costly full-fledged constrained optimization. The method was validated on two treatment plans of patients treated in a clinical proton therapy center, with dose and LETd distributions compared before and after reoptimization. Simultaneous dose and LETd optimization using FREDopt led to a substantial reduction of LETd and (dose)x(LETd) in organs at risk (OARs) while preserving target dose conformity. Computational performance evaluation showed execution times of 14-50 minutes, depending on the algorithm and target volume size-satisfactory for clinical and research applications while enabling further development of the well-tested, documented open-source software.</p>","PeriodicalId":93888,"journal":{"name":"ArXiv","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12486063/pdf/","citationCount":"0","resultStr":"{\"title\":\"GPU-accelerated FREDopt package for simultaneous dose and LETd proton radiotherapy plan optimization via superiorization methods.\",\"authors\":\"Damian Borys, Jan Gajewski, Tobias Becher, Yair Censor, Renata Kopeć, Marzena Rydygier, Angelo Schiavi, Tomasz Skóra, Anna Spaleniak, Niklas Wahl, Agnieszka Wochnik, Antoni Ruciński\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study presents FREDopt, a newly developed GPU-accelerated open-source optimization software for simultaneous proton dose and dose-averaged LET (LETd) optimization in IMPT treatment planning. FREDopt was implemented entirely in Python, leveraging CuPy for GPU acceleration and incorporating fast Monte Carlo (MC) simulations from the FRED code. The treatment plan optimization workflow includes pre-optimization and optimization, the latter equipped with a novel superiorization of feasibility-seeking algorithms. Feasibility-seeking requires finding a point that satisfies prescribed constraints. Superiorization interlaces computational perturbations into iterative feasibility-seeking steps to steer them toward a superior feasible point, replacing the need for costly full-fledged constrained optimization. The method was validated on two treatment plans of patients treated in a clinical proton therapy center, with dose and LETd distributions compared before and after reoptimization. Simultaneous dose and LETd optimization using FREDopt led to a substantial reduction of LETd and (dose)x(LETd) in organs at risk (OARs) while preserving target dose conformity. Computational performance evaluation showed execution times of 14-50 minutes, depending on the algorithm and target volume size-satisfactory for clinical and research applications while enabling further development of the well-tested, documented open-source software.</p>\",\"PeriodicalId\":93888,\"journal\":{\"name\":\"ArXiv\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12486063/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ArXiv\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ArXiv","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究提出了FREDopt,一个新开发的gpu加速开源优化软件,用于同步质子剂量和剂量平均LET (LETd)优化IMPT治疗计划。FREDopt完全在Python中实现,利用CuPy进行GPU加速,并从FRED代码中合并快速蒙特卡罗(MC)模拟。治疗方案优化工作流程包括预优化和优化两部分,优化部分采用了一种新颖的可行性寻优算法。可行性寻求要求找到一个满足规定约束的点。优越化将计算扰动穿插到迭代的可行性寻求步骤中,以引导它们走向优越的可行点,取代了昂贵的全面约束优化的需要。以某临床质子治疗中心患者的两种治疗方案进行验证,比较再优化前后的剂量和LETd分布。使用FREDopt同时优化剂量和LETd,可在保持目标剂量一致性的同时,大幅降低危险器官(OARs)的LETd和(剂量)x(LETd)。计算性能评估显示,根据算法和目标体积大小,执行时间为14-50分钟,这对于临床和研究应用来说是令人满意的,同时可以进一步开发经过良好测试的开源软件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
GPU-accelerated FREDopt package for simultaneous dose and LETd proton radiotherapy plan optimization via superiorization methods.

This study presents FREDopt, a newly developed GPU-accelerated open-source optimization software for simultaneous proton dose and dose-averaged LET (LETd) optimization in IMPT treatment planning. FREDopt was implemented entirely in Python, leveraging CuPy for GPU acceleration and incorporating fast Monte Carlo (MC) simulations from the FRED code. The treatment plan optimization workflow includes pre-optimization and optimization, the latter equipped with a novel superiorization of feasibility-seeking algorithms. Feasibility-seeking requires finding a point that satisfies prescribed constraints. Superiorization interlaces computational perturbations into iterative feasibility-seeking steps to steer them toward a superior feasible point, replacing the need for costly full-fledged constrained optimization. The method was validated on two treatment plans of patients treated in a clinical proton therapy center, with dose and LETd distributions compared before and after reoptimization. Simultaneous dose and LETd optimization using FREDopt led to a substantial reduction of LETd and (dose)x(LETd) in organs at risk (OARs) while preserving target dose conformity. Computational performance evaluation showed execution times of 14-50 minutes, depending on the algorithm and target volume size-satisfactory for clinical and research applications while enabling further development of the well-tested, documented open-source software.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信