用于TCR-pMHC预测的理性多模态变压器。

ArXiv Pub Date : 2025-09-22
Jiarui Li, Zixiang Yin, Zhengming Ding, Samuel J Landry, Ramgopal R Mettu
{"title":"用于TCR-pMHC预测的理性多模态变压器。","authors":"Jiarui Li, Zixiang Yin, Zhengming Ding, Samuel J Landry, Ramgopal R Mettu","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>T cell receptor (TCR) recognition of peptide-MHC (pMHC) complexes is fundamental to adaptive immunity and central to the development of T cell-based immunotherapies. While transformer-based models have shown promise in predicting TCR-pMHC interactions, most lack a systematic and explainable approach to architecture design. We present an approach that uses a new post-hoc explainability method to inform the construction of a novel encoder-decoder transformer model. By identifying the most informative combinations of TCR and epitope sequence inputs, we optimize cross-attention strategies, incorporate auxiliary training objectives, and introduce a novel early-stopping criterion based on explanation quality. Our framework achieves state-of-the-art predictive performance while simultaneously improving explainability, robustness, and generalization. This work establishes a principled, explanation-driven strategy for modeling TCR-pMHC binding and offers mechanistic insights into sequence-level binding behavior through the lens of deep learning.</p>","PeriodicalId":93888,"journal":{"name":"ArXiv","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12486057/pdf/","citationCount":"0","resultStr":"{\"title\":\"Rational Multi-Modal Transformers for TCR-pMHC Prediction.\",\"authors\":\"Jiarui Li, Zixiang Yin, Zhengming Ding, Samuel J Landry, Ramgopal R Mettu\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>T cell receptor (TCR) recognition of peptide-MHC (pMHC) complexes is fundamental to adaptive immunity and central to the development of T cell-based immunotherapies. While transformer-based models have shown promise in predicting TCR-pMHC interactions, most lack a systematic and explainable approach to architecture design. We present an approach that uses a new post-hoc explainability method to inform the construction of a novel encoder-decoder transformer model. By identifying the most informative combinations of TCR and epitope sequence inputs, we optimize cross-attention strategies, incorporate auxiliary training objectives, and introduce a novel early-stopping criterion based on explanation quality. Our framework achieves state-of-the-art predictive performance while simultaneously improving explainability, robustness, and generalization. This work establishes a principled, explanation-driven strategy for modeling TCR-pMHC binding and offers mechanistic insights into sequence-level binding behavior through the lens of deep learning.</p>\",\"PeriodicalId\":93888,\"journal\":{\"name\":\"ArXiv\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12486057/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ArXiv\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ArXiv","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

T细胞受体(TCR)对肽- mhc (pMHC)复合物的识别是适应性免疫的基础,也是T细胞免疫疗法发展的核心。虽然基于变压器的模型在预测TCR-pMHC相互作用方面显示出了希望,但大多数模型缺乏系统和可解释的架构设计方法。我们提出了一种使用新的事后可解释性方法来构建新的编码器-解码器变压器模型的方法。通过识别TCR和表位序列输入的最具信息量的组合,我们优化了交叉注意策略,纳入了辅助训练目标,并引入了一种基于解释质量的新型早期停止标准。我们的框架实现了最先进的预测性能,同时提高了可解释性、鲁棒性和泛化性。这项工作为TCR-pMHC结合建模建立了一个原则性的、解释驱动的策略,并通过深度学习的视角提供了对序列级结合行为的机制见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Rational Multi-Modal Transformers for TCR-pMHC Prediction.

T cell receptor (TCR) recognition of peptide-MHC (pMHC) complexes is fundamental to adaptive immunity and central to the development of T cell-based immunotherapies. While transformer-based models have shown promise in predicting TCR-pMHC interactions, most lack a systematic and explainable approach to architecture design. We present an approach that uses a new post-hoc explainability method to inform the construction of a novel encoder-decoder transformer model. By identifying the most informative combinations of TCR and epitope sequence inputs, we optimize cross-attention strategies, incorporate auxiliary training objectives, and introduce a novel early-stopping criterion based on explanation quality. Our framework achieves state-of-the-art predictive performance while simultaneously improving explainability, robustness, and generalization. This work establishes a principled, explanation-driven strategy for modeling TCR-pMHC binding and offers mechanistic insights into sequence-level binding behavior through the lens of deep learning.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信