在秀丽隐杆线虫中引起NEDMAB和Zimmermann-Laband综合征-3的人类SK通道变异的功能验证。

IF 4.5 Q1 CLINICAL NEUROLOGY
Brain communications Pub Date : 2025-09-16 eCollection Date: 2025-01-01 DOI:10.1093/braincomms/fcaf351
Sara Sechi, Charlotte Galaup, Maelle Jospin, Thomas Boulin
{"title":"在秀丽隐杆线虫中引起NEDMAB和Zimmermann-Laband综合征-3的人类SK通道变异的功能验证。","authors":"Sara Sechi, Charlotte Galaup, Maelle Jospin, Thomas Boulin","doi":"10.1093/braincomms/fcaf351","DOIUrl":null,"url":null,"abstract":"<p><p>Small conductance Ca<sup>2+</sup>-activated K<sup>+</sup> channels (SK channels) are widely expressed in the central nervous system, where they play a crucial role in modulating neuronal excitability. Recent studies have identified missense variants in the genes encoding SK2 and SK3 channels as the cause of two rare neurodevelopmental disorders: NEDMAB and ZLS3, respectively. Here, we used <i>Caenorhabditis elegans</i> as an <i>in vivo</i> model to investigate the functional consequences of these patient variants. The <i>C. elegans</i> orthologue KCNL-1 regulates neuronal and muscle excitability in the egg-laying system, a well-characterized model circuit. To visualize KCNL-1 expression and localization, we generated a fluorescent translational reporter at the endogenous <i>kcnl-1</i> locus. We then introduced eight point mutations corresponding to pathogenic variants reported in NEDMAB or ZLS3 patients. Our study confirmed the molecular pathogenicity of the ZLS3-associated mutations, revealing a gain-of-function effect that led to increased <i>in utero</i> egg retention, likely due to electrical silencing of the egg-laying circuitry. NEDMAB mutations exhibited more complex phenotypic effects. Most caused a loss-of-function phenotype, indistinguishable from null mutants, while one displayed a clear gain-of-function effect. Additionally, a subset of NEDMAB variants altered KCNL-1 localization, suggesting an impairment in channel biosynthesis, trafficking or stability. These findings provide new insights into the molecular mechanisms underlying NEDMAB and ZLS3 physiopathology, enhancing our understanding of SK channel dysfunction in human disease. Moreover, they establish <i>C. elegans</i> as a robust and cost-effective <i>in vivo</i> model for rapid functional validation of new SK channel mutations, paving the way for future investigations.</p>","PeriodicalId":93915,"journal":{"name":"Brain communications","volume":"7 5","pages":"fcaf351"},"PeriodicalIF":4.5000,"publicationDate":"2025-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12484442/pdf/","citationCount":"0","resultStr":"{\"title\":\"Functional validation of human SK channels variants causing NEDMAB and Zimmermann-Laband syndrome-3 in <i>C. elegans</i>.\",\"authors\":\"Sara Sechi, Charlotte Galaup, Maelle Jospin, Thomas Boulin\",\"doi\":\"10.1093/braincomms/fcaf351\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Small conductance Ca<sup>2+</sup>-activated K<sup>+</sup> channels (SK channels) are widely expressed in the central nervous system, where they play a crucial role in modulating neuronal excitability. Recent studies have identified missense variants in the genes encoding SK2 and SK3 channels as the cause of two rare neurodevelopmental disorders: NEDMAB and ZLS3, respectively. Here, we used <i>Caenorhabditis elegans</i> as an <i>in vivo</i> model to investigate the functional consequences of these patient variants. The <i>C. elegans</i> orthologue KCNL-1 regulates neuronal and muscle excitability in the egg-laying system, a well-characterized model circuit. To visualize KCNL-1 expression and localization, we generated a fluorescent translational reporter at the endogenous <i>kcnl-1</i> locus. We then introduced eight point mutations corresponding to pathogenic variants reported in NEDMAB or ZLS3 patients. Our study confirmed the molecular pathogenicity of the ZLS3-associated mutations, revealing a gain-of-function effect that led to increased <i>in utero</i> egg retention, likely due to electrical silencing of the egg-laying circuitry. NEDMAB mutations exhibited more complex phenotypic effects. Most caused a loss-of-function phenotype, indistinguishable from null mutants, while one displayed a clear gain-of-function effect. Additionally, a subset of NEDMAB variants altered KCNL-1 localization, suggesting an impairment in channel biosynthesis, trafficking or stability. These findings provide new insights into the molecular mechanisms underlying NEDMAB and ZLS3 physiopathology, enhancing our understanding of SK channel dysfunction in human disease. Moreover, they establish <i>C. elegans</i> as a robust and cost-effective <i>in vivo</i> model for rapid functional validation of new SK channel mutations, paving the way for future investigations.</p>\",\"PeriodicalId\":93915,\"journal\":{\"name\":\"Brain communications\",\"volume\":\"7 5\",\"pages\":\"fcaf351\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2025-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12484442/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brain communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/braincomms/fcaf351\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/braincomms/fcaf351","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

摘要

小电导Ca2+激活的K+通道(SK通道)在中枢神经系统中广泛表达,在调节神经元兴奋性中起着至关重要的作用。最近的研究发现,编码SK2和SK3通道的基因错义变异分别是两种罕见神经发育障碍:NEDMAB和ZLS3的原因。在这里,我们使用秀丽隐杆线虫作为体内模型来研究这些患者变异的功能后果。秀丽隐杆线虫同源基因KCNL-1调节产卵系统中的神经元和肌肉兴奋性,这是一种表征良好的模型电路。为了可视化KCNL-1的表达和定位,我们在内源性KCNL-1位点生成了一个荧光翻译报告基因。然后,我们引入了8个点突变,对应于在NEDMAB或ZLS3患者中报道的致病变异。我们的研究证实了zls3相关突变的分子致病性,揭示了一种功能获得效应,导致子宫内卵子潴留增加,可能是由于产卵回路的电沉默。NEDMAB突变表现出更复杂的表型效应。大多数引起了功能丧失表型,与零突变无法区分,而一个显示出明显的功能获得效应。此外,NEDMAB变体的一个子集改变了KCNL-1的定位,表明通道生物合成、运输或稳定性受损。这些发现为探究NEDMAB和ZLS3生理病理的分子机制提供了新的见解,增强了我们对人类疾病中SK通道功能障碍的理解。此外,他们建立了秀丽隐杆线虫作为快速验证新的SK通道突变功能的强大和经济的体内模型,为未来的研究铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Functional validation of human SK channels variants causing NEDMAB and Zimmermann-Laband syndrome-3 in C. elegans.

Small conductance Ca2+-activated K+ channels (SK channels) are widely expressed in the central nervous system, where they play a crucial role in modulating neuronal excitability. Recent studies have identified missense variants in the genes encoding SK2 and SK3 channels as the cause of two rare neurodevelopmental disorders: NEDMAB and ZLS3, respectively. Here, we used Caenorhabditis elegans as an in vivo model to investigate the functional consequences of these patient variants. The C. elegans orthologue KCNL-1 regulates neuronal and muscle excitability in the egg-laying system, a well-characterized model circuit. To visualize KCNL-1 expression and localization, we generated a fluorescent translational reporter at the endogenous kcnl-1 locus. We then introduced eight point mutations corresponding to pathogenic variants reported in NEDMAB or ZLS3 patients. Our study confirmed the molecular pathogenicity of the ZLS3-associated mutations, revealing a gain-of-function effect that led to increased in utero egg retention, likely due to electrical silencing of the egg-laying circuitry. NEDMAB mutations exhibited more complex phenotypic effects. Most caused a loss-of-function phenotype, indistinguishable from null mutants, while one displayed a clear gain-of-function effect. Additionally, a subset of NEDMAB variants altered KCNL-1 localization, suggesting an impairment in channel biosynthesis, trafficking or stability. These findings provide new insights into the molecular mechanisms underlying NEDMAB and ZLS3 physiopathology, enhancing our understanding of SK channel dysfunction in human disease. Moreover, they establish C. elegans as a robust and cost-effective in vivo model for rapid functional validation of new SK channel mutations, paving the way for future investigations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.00
自引率
0.00%
发文量
0
审稿时长
6 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信