概率几何主成分分析及其在神经数据中的应用。

ArXiv Pub Date : 2025-09-22
Han-Lin Hsieh, Maryam M Shanechi
{"title":"概率几何主成分分析及其在神经数据中的应用。","authors":"Han-Lin Hsieh, Maryam M Shanechi","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Dimensionality reduction is critical across various domains of science including neuroscience. Probabilistic Principal Component Analysis (PPCA) is a prominent dimensionality reduction method that provides a probabilistic approach unlike the deterministic approach of PCA and serves as a connection between PCA and Factor Analysis (FA). Despite their power, PPCA and its extensions are mainly based on linear models and can only describe the data in a Euclidean coordinate system. However, in many neuroscience applications, data may be distributed around a nonlinear geometry (i.e., manifold) rather than lying in the Euclidean space. We develop Probabilistic Geometric Principal Component Analysis (PGPCA) for such datasets as a new dimensionality reduction algorithm that can explicitly incorporate knowledge about a given nonlinear manifold that is first fitted from these data. Further, we show how in addition to the Euclidean coordinate system, a geometric coordinate system can be derived for the manifold to capture the deviations of data from the manifold and noise. We also derive a data-driven EM algorithm for learning the PGPCA model parameters. As such, PGPCA generalizes PPCA to better describe data distributions by incorporating a nonlinear manifold geometry. In simulations and brain data analyses, we show that PGPCA can effectively model the data distribution around various given manifolds and outperforms PPCA for such data. Moreover, PGPCA provides the capability to test whether the new geometric coordinate system better describes the data than the Euclidean one. Finally, PGPCA can perform dimensionality reduction and learn the data distribution both around and on the manifold. These capabilities make PGPCA valuable for enhancing the efficacy of dimensionality reduction for analysis of high-dimensional data that exhibit noise and are distributed around a nonlinear manifold.</p>","PeriodicalId":93888,"journal":{"name":"ArXiv","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12486060/pdf/","citationCount":"0","resultStr":"{\"title\":\"Probabilistic Geometric Principal Component Analysis with application to neural data.\",\"authors\":\"Han-Lin Hsieh, Maryam M Shanechi\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Dimensionality reduction is critical across various domains of science including neuroscience. Probabilistic Principal Component Analysis (PPCA) is a prominent dimensionality reduction method that provides a probabilistic approach unlike the deterministic approach of PCA and serves as a connection between PCA and Factor Analysis (FA). Despite their power, PPCA and its extensions are mainly based on linear models and can only describe the data in a Euclidean coordinate system. However, in many neuroscience applications, data may be distributed around a nonlinear geometry (i.e., manifold) rather than lying in the Euclidean space. We develop Probabilistic Geometric Principal Component Analysis (PGPCA) for such datasets as a new dimensionality reduction algorithm that can explicitly incorporate knowledge about a given nonlinear manifold that is first fitted from these data. Further, we show how in addition to the Euclidean coordinate system, a geometric coordinate system can be derived for the manifold to capture the deviations of data from the manifold and noise. We also derive a data-driven EM algorithm for learning the PGPCA model parameters. As such, PGPCA generalizes PPCA to better describe data distributions by incorporating a nonlinear manifold geometry. In simulations and brain data analyses, we show that PGPCA can effectively model the data distribution around various given manifolds and outperforms PPCA for such data. Moreover, PGPCA provides the capability to test whether the new geometric coordinate system better describes the data than the Euclidean one. Finally, PGPCA can perform dimensionality reduction and learn the data distribution both around and on the manifold. These capabilities make PGPCA valuable for enhancing the efficacy of dimensionality reduction for analysis of high-dimensional data that exhibit noise and are distributed around a nonlinear manifold.</p>\",\"PeriodicalId\":93888,\"journal\":{\"name\":\"ArXiv\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12486060/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ArXiv\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ArXiv","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

降维在包括神经科学在内的各个科学领域都至关重要。概率主成分分析(PPCA)是一种突出的降维方法,它提供了一种不同于PCA的确定性方法的概率方法,并作为PCA和因子分析(FA)之间的联系。尽管它们很强大,但PPCA及其扩展主要基于线性模型,并且只能在欧几里德坐标系中描述数据。然而,在许多神经科学应用中,数据可能分布在非线性几何(即流形)周围,而不是位于欧几里得空间中。我们为这些数据集开发了概率几何主成分分析(PGPCA),作为一种新的降维算法,可以显式地结合关于首先从这些数据中拟合的给定非线性流形的知识。此外,我们还展示了除了欧几里得坐标系之外,如何为流形导出几何坐标系来捕获数据与流形和噪声的偏差。我们还推导了一种数据驱动的EM算法,用于学习PGPCA模型参数。因此,PGPCA通过结合非线性流形几何来推广PPCA,以更好地描述数据分布。在模拟和大脑数据分析中,我们表明PGPCA可以有效地模拟各种给定流形周围的数据分布,并且在这些数据上优于PPCA。此外,PGPCA还提供了测试新的几何坐标系是否比欧几里得坐标系更好地描述数据的能力。最后,PGPCA可以进行降维,学习流形周围和流形上的数据分布。这些功能使得PGPCA对于提高分析高维数据的降维效率非常有价值,这些高维数据显示噪声并且分布在非线性流形周围。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Probabilistic Geometric Principal Component Analysis with application to neural data.

Dimensionality reduction is critical across various domains of science including neuroscience. Probabilistic Principal Component Analysis (PPCA) is a prominent dimensionality reduction method that provides a probabilistic approach unlike the deterministic approach of PCA and serves as a connection between PCA and Factor Analysis (FA). Despite their power, PPCA and its extensions are mainly based on linear models and can only describe the data in a Euclidean coordinate system. However, in many neuroscience applications, data may be distributed around a nonlinear geometry (i.e., manifold) rather than lying in the Euclidean space. We develop Probabilistic Geometric Principal Component Analysis (PGPCA) for such datasets as a new dimensionality reduction algorithm that can explicitly incorporate knowledge about a given nonlinear manifold that is first fitted from these data. Further, we show how in addition to the Euclidean coordinate system, a geometric coordinate system can be derived for the manifold to capture the deviations of data from the manifold and noise. We also derive a data-driven EM algorithm for learning the PGPCA model parameters. As such, PGPCA generalizes PPCA to better describe data distributions by incorporating a nonlinear manifold geometry. In simulations and brain data analyses, we show that PGPCA can effectively model the data distribution around various given manifolds and outperforms PPCA for such data. Moreover, PGPCA provides the capability to test whether the new geometric coordinate system better describes the data than the Euclidean one. Finally, PGPCA can perform dimensionality reduction and learn the data distribution both around and on the manifold. These capabilities make PGPCA valuable for enhancing the efficacy of dimensionality reduction for analysis of high-dimensional data that exhibit noise and are distributed around a nonlinear manifold.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信